日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知正方形ABCD的邊長為4cm,E為AB上一點,AE=3cm,連接EC,MN⊥EC分別交AD、BC于點M、N,則MN的長為
          17
          cm
          17
          cm
          分析:過M作MG⊥BC于G,過E作EH⊥DC于H,得出矩形MGCD和矩形EHDA,推出EH=MG,求出∠MGN=∠EHC=90°,∠GMN=∠HEC,根據(jù)ASA證△EHC≌△MGN,推出CE=MN,根據(jù)勾股定理求出EC即可.
          解答:解:
          過M作MG⊥BC于G,過E作EH⊥DC于H,
          ∵四邊形ABCD是正方形,
          ∴AD=DC,∠D=∠DCA=90°=∠MGC,
          ∴四邊形MGCD是矩形,
          ∴MG=DC,
          同理EH=AD,
          ∴MG=EH,
          ∵MG⊥BC,EH⊥DC,
          ∴∠EHC=∠MGN=90°,
          ∵MN⊥CE,
          ∴∠NTC=90°=∠DCB,
          ∴∠MNG+∠GMN=90°,∠HCE+∠NCT=90°,
          ∴∠GMN=∠ECB,
          ∵EH⊥DC,∠BCD=90°,
          ∴EH∥BC,
          ∴∠HEC=∠TCN,
          ∴∠HEC=∠GMN,
          ∵在△EHC和△MGN中
          ∠HEC=∠GMN
          EH=MG
          ∠EHC=∠MGN
          ,
          ∴△EHC≌△MGN(ASA),
          ∴CE=MN,
          在Rt△BEC中,BC=4cm,BE=4cm-3cm=1cm,由勾股定理得:CE=
          42+12
          =
          17
          cm,
          即MN=
          17
          cm,
          故答案為:
          17
          cm.
          點評:本題考查了勾股定理,正方形性質(zhì),全等三角形的性質(zhì)和判定,矩形的性質(zhì)和判定等知識點的應(yīng)用,關(guān)鍵是推出△EHC≌△MGN.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知正方形ABCD的邊長為12cm,E為CD邊上一點,DE=5cm.以點A為中心,將△ADE按順時針方向旋轉(zhuǎn)得△ABF,則點E所經(jīng)過的路徑長為
           
          cm.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知正方形ABCD的邊長為6,以D為圓心,DA為半徑在正方形內(nèi)作弧AC,E是AB邊上動點(與點A、B不重精英家教網(wǎng)合),過點E作弧AC的切線,交BC于點F,G為切點,⊙O是△EBF的內(nèi)切圓,分別切EB、BF、FE于點P、J、H
          (1)求證:△ADE∽△PEO;
          (2)設(shè)AE=x,⊙O的半徑為y,求y關(guān)于x的解析式,并寫出定義域;
          (3)當(dāng)⊙O的半徑為1時,求CF的長;
          (4)當(dāng)點E在移動時,圖中哪些線段與線段EP始終保持相等,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2011•同安區(qū)質(zhì)檢)如圖,已知正方形ABCD的邊長是2,E是AB的中點,延長BC到點F使CF=AE.
          (1)求證:△ADE≌△CDF;
          (2)現(xiàn)把△DCF向左平移,使DC與AB重合,得△ABH,AH交ED于點G.求AG的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•香洲區(qū)一模)如圖,已知正方形ABCD的邊長為28,動點P從A開始在線段AD上以每秒3個單位長度的速度向點D運動(點P到達點D時終止運動),動直線EF從AD開始以每秒1個單位長度的速度向下平行移動(即EF∥AD),并且分別與DC、AC交于E、F兩點,連接FP,設(shè)動點P與動直線EF同時出發(fā),運動時間為t 秒.
          (1)t為何值時,梯形DPFE的面積最大?最大面積是多少?
          (2)當(dāng)梯形DPFE的面積等于△APF的面積時,求線段PF的長.
          (3)△DPF能否為一個等腰三角形?若能,試求出所有的t的值;若不能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知正方形ABCD的邊長為8cm,點E、F分別在邊BC、CD上,∠EAF=45°.當(dāng)EF=8cm時,△AEF的面積是
          32
          32
          cm2;當(dāng)EF=7cm時,△EFC的面積是
          8
          8
          cm2

          查看答案和解析>>

          同步練習(xí)冊答案