日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線y=x2-4x+1,將此拋物線沿x軸方向向左平移4個單位長度,得到一條新的拋物線.
          (1)求平移后的拋物線解析式;
          (2)由拋物線對稱軸知識我們已經(jīng)知道:直線x=m,即為過點(m,0)平行于y軸的直線,類似地,直線y=m,即為過點(0,m)平行于x軸的直線、請結(jié)合圖象回答:當(dāng)直線y=m與這兩條拋物線有且只有四個交點,實數(shù)m的取值范圍;
          (3)若將已知的拋物線解析式改為y=x2+bx+c(b<0),并將此拋物線沿x軸向左平移-b個單位長度,試回答(2)中的問題.精英家教網(wǎng)
          分析:(1)將已知的拋物線化為頂點式,然后根據(jù)“左加右減,上加下減”的平移規(guī)律進行解答;
          (2)畫出兩個拋物線的大致圖象,可以看出只有當(dāng)直線y=m在直線y=-3上方時,直線y=m與兩個拋物線才有4個交點;(m=1除外,因為當(dāng)m=1時,y=m與兩條拋物線只有3個交點)
          (3)方法同(2).
          解答:解:(1)由題意,得:y=x2-4x+1=(x-2)2-3;
          向左平移4個單位,得y=(x+2)2-3;
          ∴平移后拋物線的解析式為y=x2+4x+1;

          (2)由(1)知,兩拋物線的頂點坐標(biāo)分別為(2,-3)和(-2,-3),與y軸的交點為(0,1);
          由圖象知,若直線y=m與兩條拋物線有且只有4個交點時,m>-3且m≠1;
          精英家教網(wǎng)
          (3)由y=x2+bx+c配方得:y=(x+
          b
          2
          2+
          4c-b2
          4
          ;
          向左平移-b個單位長度得:y=(x-
          b
          2
          2+
          4c-b2
          4
          ;
          ∴兩拋物線的頂點坐標(biāo)分別為(-
          b
          2
          4c-b2
          4
          ),(
          b
          2
          4c-b2
          4
          );
          與y軸的交點為(0,c);
          利用(2)的圖象知,實數(shù)m的取值范圍是:m>
          4c-b2
          4
          ,且m≠c.
          點評:此題主要考查了二次函數(shù)圖象的平移,以及根據(jù)二次函數(shù)的圖象解決問題的能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          已知拋物線y=x2-8x+c的頂點在x軸上,則c等于(  )
          A、4B、8C、-4D、16

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知拋物線y=x2+(1-2a)x+a2(a≠0)與x軸交于兩點A(x1,0)、B(x2,0)(x1≠x2).
          (1)求a的取值范圍,并證明A、B兩點都在原點O的左側(cè);
          (2)若拋物線與y軸交于點C,且OA+OB=OC-2,求a的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知拋物線y=-x2+bx+c與x軸負(fù)半軸交于點A,與y軸正半軸交于點B,且OA=OB.
          精英家教網(wǎng)(1)求b+c的值;
          (2)若點C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
          (3)在(2)的條件下,作∠OBC的角平分線,與拋物線交于點P,求點P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•虹口區(qū)一模)如圖,在平面直角坐標(biāo)系xOy中,已知拋物線y=x2+bx+c經(jīng)過A(0,3),B(1,0)兩點,頂點為M.
          (1)求b、c的值;
          (2)將△OAB繞點B順時針旋轉(zhuǎn)90°后,點A落到點C的位置,該拋物線沿y軸上下平移后經(jīng)過點C,求平移后所得拋物線的表達式;
          (3)設(shè)(2)中平移后所得的拋物線與y軸的交點為A1,頂點為M1,若點P在平移后的拋物線上,且滿足△PMM1的面積是△PAA1面積的3倍,求點P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•黔南州)已知拋物線y=x2-x-1與x軸的交點為(m,0),則代數(shù)式m2-m+2011的值為( 。

          查看答案和解析>>

          同步練習(xí)冊答案