日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,等腰直角△ABC,ABC=90°,點(diǎn)PAC,將△ABP繞頂點(diǎn)B沿順時針方向旋轉(zhuǎn)90°后得到△CBQ

          1)求∠PCQ的度數(shù)

          2)當(dāng)AB=4,APPC=13,PQ的大小

          3)當(dāng)點(diǎn)P在線段AC上運(yùn)動時(P不與A重合),請寫出一個反映PA2,PC2PB2之間關(guān)系的等式,并加以證明.

          【答案】190°;(22;(32PB2=PA2+PC2

          【解析】

          1)由于∠PCB=BCQ=45°,故有∠PCQ=90°.

          2)由等腰直角三角形的性質(zhì)知,AC=4,根據(jù)已知條件,可求得APPC的值,再由勾股定理求得PQ的值.

          3)由于△PBQ也是等腰直角三角形,故有PQ2=2PB2=PA2+PC2

          1)由題意知,△ABP≌△CQB,

          ∴∠A=ACB=BCQ=45°,ABP=CPQ,AP=CQ,PB=BQ,

          ∴∠PCQ=ACB+∠BCQ=90°,ABP+∠PBC=CPQ+∠PBC=90°,

          ∴△BPQ是等腰直角三角形,△PCQ是直角三角形.

          2)當(dāng)AB=4,APPC=13時,有AC=4,AP=,PC=3

          PQ==2

          3)存在2PB2=PA2+PC2,由于△BPQ是等腰直角三角形,

          PQ=PB

          AP=CQ,PQ2=PC2+CQ2=PA2+PC2

          故有2PB2=PA2+PC2

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為慶祝春節(jié),市政府決定在市政廣場上增一排燈花,其設(shè)計由以下圖案逐步演變而成,其中圓圈代表燈花中的燈泡,n代表第n次演變過程,s代表第n次演變后的燈泡的個數(shù),仔細(xì)觀察下列演變過程,當(dāng)n=7時,s= ).

          A.162B.176C.190D.214

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】將圖中的正方形剪開得到圖,圖中共有4個正方形;將圖中一個正方形剪開得到圖,圖中共有7個正方形;將圖中一個正方形剪開得到圖,圖中共有10個正方形……如此下去,則第2018個圖中共有正方形的個數(shù)為( )

          A.2018B.6049C.6052D.6055

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小張第一次用180元購買了8套兒童服裝,以一定價格出售.如果以每套兒童服裝80元的價格為標(biāo)準(zhǔn),超出的記作整數(shù),不足的記作負(fù)數(shù),記錄如下(單位:元):

          請通過計算說明

          (1)小張賣完這8套兒童服裝后是盈利還是虧損?盈利(或虧損)了多少錢?

          (2)每套兒童服裝的平均售價是多少元?

          (3)小張第二次用第一次的進(jìn)價再次購買900元的兒童服裝,如果他預(yù)計第二次每套服裝的平均售價75元,按他的預(yù)計第二次售價可獲利多少元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABCD為正方形,E為BC上一點(diǎn),將正方形折疊,使A點(diǎn)與E點(diǎn)重合,折痕為MN,若tan∠AEN=,DC+CE=10.

          (1)求△ANE的面積;

          (2)求sin∠ENB的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知,之間的距離為3, 之間的距離為6, 分別等邊三角形的三個頂點(diǎn),則此三角形的邊長為__________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線軸、軸分別交于兩點(diǎn),的中點(diǎn),上一點(diǎn),四邊形是菱形,則面積為___________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.

          (1)求證:四邊形ABCD是矩形.

          (2)若∠ADF:∠FDC=3:2,DF⊥AC,則∠BDF的度數(shù)是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在三角形紙片ABC中,∠A90°,∠C30°,AC10cm,將該紙片沿過點(diǎn)B的直線折疊,使點(diǎn)A落在斜邊BC上的一點(diǎn)E處,折痕記為BD(如圖1),剪去△CDE后得到雙層△BDE(如圖2),再沿著過△BDE某頂點(diǎn)的直線將雙層三角形剪開,使得展開后的平面圖形中有一個是平行四邊形,則所得平行四邊形的周長為_____cm

          查看答案和解析>>

          同步練習(xí)冊答案