日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,點(diǎn)C是半圓O上的一點(diǎn),AB是⊙O的直徑,D的中點(diǎn),作DEAB于點(diǎn)E,連接ACDE于點(diǎn)F,求證:AF=DF.

          下面是小明的做法,請(qǐng)幫他補(bǔ)充完整(包括補(bǔ)全圖形)

          解:補(bǔ)全半圓O為完整的⊙O,連接AD,延長(zhǎng)DE交⊙O于點(diǎn)H(補(bǔ)全圖形)

          D的中點(diǎn),

          .

          DEAB,AB是⊙O的直徑,

          )(填推理依據(jù))

          ∴∠ADF=FAD )(填推理依據(jù))

          AF=DF )(填推理依據(jù))

          【答案】垂徑定理,等弧所對(duì)的圓周角相等,等角對(duì)等邊.

          【解析】

          利用圓周角定理以及垂徑定理證明∠ADF=FAD即可解決問(wèn)題.

          補(bǔ)全半圓O為完整的⊙O,連結(jié)AD,延長(zhǎng)DE交⊙O于點(diǎn)H(補(bǔ)全圖形).

          D的中點(diǎn),

          .

          DEABAB是⊙O的直徑,

          (垂徑定理)

          ∴∠ADF=FAD(等弧所對(duì)的圓周角相等)

          AF=DF(等角對(duì)等邊)

          故答案為:垂徑定理,等弧所對(duì)的圓周角相等,等角對(duì)等邊.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知⊙O經(jīng)過(guò)四邊形ABCDB、D兩點(diǎn),并與四條邊分別交于點(diǎn)E、F、G、H,且

          1)如圖①,連接BD,若BD是⊙O的直徑,求證:∠A=∠C;

          2)如圖②,若的度數(shù)為θ,∠Aα,∠Cβ,請(qǐng)直接寫(xiě)出θ、αβ之間的數(shù)量關(guān)系.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在△OAB,△OCD中,OA=OB,OC=OD,∠AOB=∠COD=90°.

          (1)若O、C、A在一條直線(xiàn)上,連AD、BC,分別取AD、BC的中點(diǎn)M、N如圖(1),求出線(xiàn)段MN、AC之間的數(shù)量關(guān)系;

          (2)若將△OCD繞O旋轉(zhuǎn)到如圖(2)的位置,連AD、BC,取BC的中點(diǎn)M,請(qǐng)?zhí)骄烤(xiàn)段OM、AD之間的關(guān)系,并證明你的結(jié)論;

          (3)若將△OCD由圖(1)的位置繞O順時(shí)針旋轉(zhuǎn)角度α(0°<α<360°),且OA=4,OC=2,是否存在角度α使得OC⊥BC?若存在,請(qǐng)直接寫(xiě)出此時(shí)△ABC的面積;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,D是等邊三角形ABC內(nèi)一點(diǎn),將線(xiàn)段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,得到線(xiàn)段AE,連接CD,BE.

          (1)求證:∠AEB=∠ADC;

          (2)連接DE,若ADC=105°,求BED的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在ABCD中,對(duì)角線(xiàn)ACBD交于點(diǎn)O,若增加一個(gè)條件,使ABCD成為菱形,下列給出的條件不正確的是(  )

          A.AB=ADB.ACBDC.AC=BDD.AD=CD

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,拋物線(xiàn)的對(duì)稱(chēng)軸與x軸交于點(diǎn)A.

          1A的坐標(biāo)為 (用含a的代數(shù)式表示);

          2)若拋物線(xiàn)與x軸交于PQ兩點(diǎn),且PQ=2,求拋物線(xiàn)的解析式.

          3)點(diǎn)B的坐標(biāo)為,若該拋物線(xiàn)與線(xiàn)段AB恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,直接寫(xiě)出a的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】通過(guò)類(lèi)比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類(lèi)的目的.下面是一個(gè)案例.

          原題:如圖①,點(diǎn)分別在正方形的邊上,,連接,則,試說(shuō)明理由.

          1)思路梳理

          因?yàn)?/span>,所以把繞點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,可使 重合.因?yàn)?/span>,所以,點(diǎn)共線(xiàn).

          根據(jù) ,易證 ,得.請(qǐng)證明.

          2)類(lèi)比引申

          如圖②,四邊形中,,,點(diǎn)分別在邊上,.都不是直角,則當(dāng)滿(mǎn)足等量關(guān)系時(shí),仍然成立,請(qǐng)證明.

          3)聯(lián)想拓展

          如圖③,在中,,點(diǎn)均在邊上,且.猜想應(yīng)滿(mǎn)足的等量關(guān)系,并寫(xiě)出證明過(guò)程.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知:如圖所示.在△ABC中,∠B=90°,AB=5cm,BC=7cm.點(diǎn)P從點(diǎn)A開(kāi)始沿AB邊向點(diǎn)B1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開(kāi)始沿BC邊向點(diǎn)C2cm/s的速度移動(dòng),當(dāng)其中一點(diǎn)達(dá)到終點(diǎn)后,另外一點(diǎn)也隨之停止運(yùn)動(dòng).

          1)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,△PBQ的面積等于4cm2?

          2)如果PQ分別從A,B同時(shí)出發(fā),那么幾秒后,PQ的長(zhǎng)度等于5cm?

          3)在(1)中,△PQB的面積能否等于7cm2?說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在菱形ABCD中,∠BAD=E為對(duì)角線(xiàn)AC上的一點(diǎn)(不與A,C重合),將射線(xiàn)EB繞點(diǎn)E順時(shí)針旋轉(zhuǎn)角之后,所得射線(xiàn)與直線(xiàn)AD交于F點(diǎn).試探究線(xiàn)段EBEF的數(shù)量關(guān)系.

          小宇發(fā)現(xiàn)點(diǎn)E的位置,的大小都不確定,于是他從特殊情況開(kāi)始進(jìn)行探究.

          1)如圖1,當(dāng)==90°時(shí),菱形ABCD是正方形.小宇發(fā)現(xiàn),在正方形中,AC平分∠BAD,作EMADMENABN.由角平分線(xiàn)的性質(zhì)可知EM=EN,進(jìn)而可得,并由全等三角形的性質(zhì)得到EBEF的數(shù)量關(guān)系為

          2)如圖2,當(dāng)=60°=120°時(shí),

          ①依題意補(bǔ)全圖形;

          ②請(qǐng)幫小宇繼續(xù)探究(1)的結(jié)論是否成立.若成立,請(qǐng)給出證明;若不成立,請(qǐng)舉出反例說(shuō)明;

          3)小宇在利用特殊圖形得到了一些結(jié)論之后,在此基礎(chǔ)上對(duì)一般的圖形進(jìn)行了探究,設(shè)∠ABE=,若旋轉(zhuǎn)后所得的線(xiàn)段EFEB的數(shù)量關(guān)系滿(mǎn)足(1)中的結(jié)論,請(qǐng)直接寫(xiě)出角,,滿(mǎn)足的關(guān)系:

          查看答案和解析>>

          同步練習(xí)冊(cè)答案