【題目】如圖,點(diǎn)C是半圓O上的一點(diǎn),AB是⊙O的直徑,D是的中點(diǎn),作DE⊥AB于點(diǎn)E,連接AC交DE于點(diǎn)F,求證:AF=DF.
下面是小明的做法,請(qǐng)幫他補(bǔ)充完整(包括補(bǔ)全圖形)
解:補(bǔ)全半圓O為完整的⊙O,連接AD,延長(zhǎng)DE交⊙O于點(diǎn)H(補(bǔ)全圖形)
∵D是的中點(diǎn),
∴.
∵DE⊥AB,AB是⊙O的直徑,
∴( )(填推理依據(jù))
∴
∴∠ADF=∠FAD( )(填推理依據(jù))
∴AF=DF( )(填推理依據(jù))
【答案】垂徑定理,等弧所對(duì)的圓周角相等,等角對(duì)等邊.
【解析】
利用圓周角定理以及垂徑定理證明∠ADF=∠FAD即可解決問(wèn)題.
補(bǔ)全半圓O為完整的⊙O,連結(jié)AD,延長(zhǎng)DE交⊙O于點(diǎn)H(補(bǔ)全圖形).
∵D是的中點(diǎn),
∴.
∵DE⊥AB,AB是⊙O的直徑,
∴(垂徑定理)
∴
∴∠ADF=∠FAD(等弧所對(duì)的圓周角相等)
∴AF=DF(等角對(duì)等邊)
故答案為:垂徑定理,等弧所對(duì)的圓周角相等,等角對(duì)等邊.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O經(jīng)過(guò)四邊形ABCD的B、D兩點(diǎn),并與四條邊分別交于點(diǎn)E、F、G、H,且.
(1)如圖①,連接BD,若BD是⊙O的直徑,求證:∠A=∠C;
(2)如圖②,若的度數(shù)為θ,∠A=α,∠C=β,請(qǐng)直接寫(xiě)出θ、α和β之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△OAB,△OCD中,OA=OB,OC=OD,∠AOB=∠COD=90°.
(1)若O、C、A在一條直線(xiàn)上,連AD、BC,分別取AD、BC的中點(diǎn)M、N如圖(1),求出線(xiàn)段MN、AC之間的數(shù)量關(guān)系;
(2)若將△OCD繞O旋轉(zhuǎn)到如圖(2)的位置,連AD、BC,取BC的中點(diǎn)M,請(qǐng)?zhí)骄烤(xiàn)段OM、AD之間的關(guān)系,并證明你的結(jié)論;
(3)若將△OCD由圖(1)的位置繞O順時(shí)針旋轉(zhuǎn)角度α(0°<α<360°),且OA=4,OC=2,是否存在角度α使得OC⊥BC?若存在,請(qǐng)直接寫(xiě)出此時(shí)△ABC的面積;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D是等邊三角形ABC內(nèi)一點(diǎn),將線(xiàn)段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,得到線(xiàn)段AE,連接CD,BE.
(1)求證:∠AEB=∠ADC;
(2)連接DE,若∠ADC=105°,求∠BED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,對(duì)角線(xiàn)AC與BD交于點(diǎn)O,若增加一個(gè)條件,使ABCD成為菱形,下列給出的條件不正確的是( )
A.AB=ADB.AC⊥BDC.AC=BDD.AD=CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線(xiàn)的對(duì)稱(chēng)軸與x軸交于點(diǎn)A.
(1)A的坐標(biāo)為 (用含a的代數(shù)式表示);
(2)若拋物線(xiàn)與x軸交于P,Q兩點(diǎn),且PQ=2,求拋物線(xiàn)的解析式.
(3)點(diǎn)B的坐標(biāo)為,若該拋物線(xiàn)與線(xiàn)段AB恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,直接寫(xiě)出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)類(lèi)比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類(lèi)的目的.下面是一個(gè)案例.
原題:如圖①,點(diǎn)分別在正方形
的邊
上,
,連接
,則
,試說(shuō)明理由.
(1)思路梳理
因?yàn)?/span>,所以把
繞點(diǎn)
逆時(shí)針旋轉(zhuǎn)90°至
,可使
與
重合.因?yàn)?/span>
,所以
,點(diǎn)
共線(xiàn).
根據(jù) ,易證 ,得
.請(qǐng)證明.
(2)類(lèi)比引申
如圖②,四邊形中,
,
,點(diǎn)
分別在邊
上,
.若
都不是直角,則當(dāng)
滿(mǎn)足等量關(guān)系時(shí),
仍然成立,請(qǐng)證明.
(3)聯(lián)想拓展
如圖③,在中,
,點(diǎn)
均在邊
上,且
.猜想
應(yīng)滿(mǎn)足的等量關(guān)系,并寫(xiě)出證明過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖所示.在△ABC中,∠B=90°,AB=5cm,BC=7cm.點(diǎn)P從點(diǎn)A開(kāi)始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開(kāi)始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng),當(dāng)其中一點(diǎn)達(dá)到終點(diǎn)后,另外一點(diǎn)也隨之停止運(yùn)動(dòng).
(1)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,△PBQ的面積等于4cm2?
(2)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,PQ的長(zhǎng)度等于5cm?
(3)在(1)中,△PQB的面積能否等于7cm2?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在菱形ABCD中,∠BAD=,E為對(duì)角線(xiàn)AC上的一點(diǎn)(不與A,C重合),將射線(xiàn)EB繞點(diǎn)E順時(shí)針旋轉(zhuǎn)
角之后,所得射線(xiàn)與直線(xiàn)AD交于F點(diǎn).試探究線(xiàn)段EB與EF的數(shù)量關(guān)系.
小宇發(fā)現(xiàn)點(diǎn)E的位置,和
的大小都不確定,于是他從特殊情況開(kāi)始進(jìn)行探究.
(1)如圖1,當(dāng)=
=90°時(shí),菱形ABCD是正方形.小宇發(fā)現(xiàn),在正方形中,AC平分∠BAD,作EM⊥AD于M,EN⊥AB于N.由角平分線(xiàn)的性質(zhì)可知EM=EN,進(jìn)而可得
,并由全等三角形的性質(zhì)得到EB與EF的數(shù)量關(guān)系為 .
(2)如圖2,當(dāng)=60°,
=120°時(shí),
①依題意補(bǔ)全圖形;
②請(qǐng)幫小宇繼續(xù)探究(1)的結(jié)論是否成立.若成立,請(qǐng)給出證明;若不成立,請(qǐng)舉出反例說(shuō)明;
(3)小宇在利用特殊圖形得到了一些結(jié)論之后,在此基礎(chǔ)上對(duì)一般的圖形進(jìn)行了探究,設(shè)∠ABE=,若旋轉(zhuǎn)后所得的線(xiàn)段EF與EB的數(shù)量關(guān)系滿(mǎn)足(1)中的結(jié)論,請(qǐng)直接寫(xiě)出角
,
,
滿(mǎn)足的關(guān)系: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com