日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】成都市某校在推進(jìn)新課改的過程中,開設(shè)的體育選修課有:A﹣籃球,B﹣?zhàn)闱颍珻﹣排球,D﹣羽毛球,E﹣乒乓球,學(xué)生可根據(jù)自己的愛好選修一門,學(xué)校王老師對某班全班同學(xué)的選課情況進(jìn)行調(diào)查統(tǒng)計(jì),制成了兩幅不完整的統(tǒng)計(jì)圖(如圖).

          (1)求出該班的總?cè)藬?shù),并補(bǔ)全頻數(shù)分布直方圖;
          (2)求出“足球”在扇形的圓心角是多少度;
          (3)該班班委4人中,1人選修籃球,2人選修足球,1人選修排球,李老師要從這4人中人任選2人了解他們對體育選課的看法,請你用列表或畫樹狀圖的方法,求選出的2人恰好1人選修籃球,1人選修足球的概率.

          【答案】
          (1)解:∵C有12人,占24%,

          ∴該班的總?cè)藬?shù)有:12÷24%=50(人),

          ∴E有:50×10%=5(人),

          A有50﹣7﹣12﹣9﹣5=17(人),

          補(bǔ)全頻數(shù)分布直方圖為


          (2)解:“足球”在扇形的圓心角是:360°× =50.4°
          (3)解:畫樹狀圖得:

          ∵共有12種等可能的結(jié)果,選出的2人恰好1人選修籃球,1人選修足球的有4種情況,

          ∴選出的2人恰好1人選修籃球,1人選修足球的概率為: =


          【解析】(1)由C有12人,占24%,即可求得該班的總?cè)藬?shù),繼而求得A與E的人數(shù),即可補(bǔ)全頻數(shù)分布直方圖;(2)由(1)可得“足球”在扇形的圓心角是360°× ;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與選出的2人恰好1人選修籃球,1人選修足球的情況,再利用概率公式即可求得答案.
          【考點(diǎn)精析】根據(jù)題目的已知條件,利用頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖的相關(guān)知識可以得到問題的答案,需要掌握特點(diǎn):①易于顯示各組的頻數(shù)分布情況;②易于顯示各組的頻數(shù)差別.(注意區(qū)分條形統(tǒng)計(jì)圖與頻數(shù)分布直方圖);能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,⊙O的直徑AB=4,∠BAC=30°,AC交⊙O于D,D是AC的中點(diǎn).
          (1)過點(diǎn)D作DE⊥BC,垂足為E,求證:直線DE是⊙O的切線;
          (2)求 與線段DE、BE圍成的陰影面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某農(nóng)業(yè)觀光園計(jì)劃將一塊面積為900m2的園圃分成A,B,C三個(gè)區(qū)域,分別種植甲、乙、丙三種花卉,且每平方米栽種甲3株或乙6株或丙12株.已知B區(qū)域面積是A區(qū)域面積的2倍.設(shè)A區(qū)域面積為x(m2).
          (1)求該園圃栽種的花卉總株數(shù)y關(guān)于x的函數(shù)表達(dá)式.
          (2)若三種花卉共栽種6600株,則A,B,C三個(gè)區(qū)域的面積分別是多少?
          (3)若三種花卉的單價(jià)(都是整數(shù))之和為45元,且差價(jià)均不超過10元,在(2)的前提下,全部栽種共需84000元.請寫出甲、乙、丙三種花卉中,種植面積最大的花卉總價(jià).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校為美化校園,計(jì)劃對面積為1800m2的區(qū)域進(jìn)行綠化,安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化的面積的2倍,并且在獨(dú)立完成面積為400m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天.
          (1)求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少m2?
          (2)若學(xué)校每天需付給甲隊(duì)的綠化費(fèi)用為0.4萬元,乙隊(duì)為0.25萬元,要使這次的綠化總費(fèi)用不超過8萬元,至少應(yīng)安排甲隊(duì)工作多少天?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,AB=4,將△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)30°后得到△A1BC1 , 則陰影部分的面積為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】拋物線y=ax2+bx+c的圖象向左平移5個(gè)單位或向右平移1個(gè)單位后都會(huì)經(jīng)過原點(diǎn),則此拋物線的對稱軸與x軸的交點(diǎn)的橫坐標(biāo)是(
          A.2
          B.﹣2
          C.3
          D.﹣3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】按照有關(guān)規(guī)定:距高鐵軌道 200米以內(nèi)的區(qū)域內(nèi)不宜臨路新建學(xué)校、醫(yī)院、敬老院和集中住宅區(qū)等噪聲敏感建筑物.
          如圖是一個(gè)小區(qū)平面示意圖,矩形ABEF為一新建小區(qū),直線MN為高鐵軌道,C、D是直線MN上的兩點(diǎn),點(diǎn)C、A、B在一直線上,且DA⊥CA,∠ACD=30°.小王看中了①號樓A單元的一套住宅,與售樓人員的對話如下:

          (1)小王心中一算,發(fā)現(xiàn)售樓人員的話不可信,請你用所學(xué)的數(shù)學(xué)知識說明理由;
          (2)若一列長度為228米的高鐵以252千米/小時(shí)的速度通過時(shí),則A單元用戶受到影響時(shí)間有多長?
          (溫馨提示: ≈1.4, ≈1.7, ≈6.1)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△POA1、△P2A1A都是等腰直角三角形,直角頂點(diǎn)P、P2在函數(shù)y= (x>0)的圖象上,斜邊OA1、A1A都在x軸上,則點(diǎn)A的坐標(biāo)是(

          A.(4,0)
          B.(4 ,0)
          C.(2,0)
          D.(2 ,0)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】模型介紹:古希臘有一個(gè)著名的“將軍飲馬問題”,大致內(nèi)容如下:古希臘一位將軍,每天都要巡查河岸側(cè)的兩個(gè)軍營A、B,他總是先去A營,再到河邊飲馬,之后再去B營,如圖 ①,他時(shí)常想,怎么走才能使每天的路程之和最短呢?
          大數(shù)學(xué)家海倫曾用軸對稱的方法巧妙的解決了這問題

          如圖②,作B關(guān)于直線l的對稱點(diǎn)B′,連接AB′與直線l交于點(diǎn)C,點(diǎn)C就是所求的位置.
          請你在下列的閱讀、應(yīng)用的過程中,完成解答.
          (1)理由:如圖③,在直線L上另取任一點(diǎn)C′,連接AC′,BC′,B′C′,
          ∵直線l是點(diǎn)B,B′的對稱軸,點(diǎn)C,C′在l上
          ∴CB= , C′B=
          ∴AC+CB=AC+CB′=
          在△AC′B′中,∵AB′<AC′+C′B′,∴AC+CB<AC′+C′B′即AC+CB最小
          歸納小結(jié):
          本問題實(shí)際是利用軸對稱變換的思想,把A、B在直線的同側(cè)問題轉(zhuǎn)化為在直線的兩側(cè),從而可利用“兩點(diǎn)之間線段最短”,即轉(zhuǎn)化為“三角形兩邊之和大于第三邊”的問題加以解決(其中C為AB′與l的交點(diǎn),即A、C、B′三點(diǎn)共線).
          本問題可拓展為“求定直線上一動(dòng)點(diǎn)與直線外兩定點(diǎn)的距離和的最小值”問題的數(shù)學(xué)模型.
          (2)模型應(yīng)用
          如圖 ④,正方形ABCD的邊長為2,E為AB的中點(diǎn),F(xiàn)是AC上一動(dòng)點(diǎn).
          求EF+FB的最小值
          分析:解決這個(gè)問題,可以借助上面的模型,由正方形的對稱性可知,B與D關(guān)于直線AC對稱,連結(jié)ED交AC于F,則EF+FB的最小值就是線段的長度,EF+FB的最小值是

          如圖⑤,已知⊙O的直徑CD為4,∠AOD的度數(shù)為60°,點(diǎn)B是 的中點(diǎn),在直徑CD上找一點(diǎn)P,使BP+AP的值最小,則BP+AP的最小值是
          如圖⑥,一次函數(shù)y=﹣2x+4的圖象與x,y軸分別交于A,B兩點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)C與點(diǎn)D分別為線段OA,AB的中點(diǎn),點(diǎn)P為OB上一動(dòng)點(diǎn),求:PC+PD的最小值,并寫出取得最小值時(shí)P點(diǎn)坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊答案