日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在△ABC中,ABAC,∠BAC120°,以CA為邊在∠ACB的另一側(cè)作∠ACM=∠ACB,點D為射線CM上任意一點,在射線CM上載取CEBD,連接ADAE.

          (1)如圖1,當(dāng)點D落在線段BC的延長線上時,求證:△ABD≌△ACE;

          (2)(1)的條件下,求出∠ADE的度數(shù);

          (3)如圖2,當(dāng)點D落在線段BC(不含端點)上時,作AHBC,垂足為H,作AGEC,垂足為G,連接HG,判斷△GHC的形狀,并說明現(xiàn)由.

          【答案】1)證明見解析;(2 ;(3HGC為等邊三角形,理由見解析.

          【解析】

          1)利用SAS定理證明△ABD≌△ACE;(2)根據(jù)全等三角形的性質(zhì)得到ADAE,∠CAE=∠BAD,根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理計算即可求得ADE的度數(shù);

          解:(1)∵ABAC,∠BAC120°,

          ∴∠ABC=∠ACB30°,

          ∵∠ACM=∠ACB,

          ∴∠ACM=∠ABC

          在△ABD和△ACE中,

          ∴△ABD≌△ACE.

          2)由(1)可知,△ABD≌△ACE,

          ADAE,∠BAD=∠CAE

          ∴∠CAE+∠DAC=∠BAD+∠DAC=∠BAC120°.即∠DAE120°.

          ADAE,

          ∴∠ADE=∠AED30°;

          (3)HGC為等邊三角形.

          理由;

          HGC為等邊三角形.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】正方形ABCDFAB上一點,HBC延長線上一點連接FH,將△FBH沿FH翻折,使點B的對應(yīng)點E落在AD,EHCD交于點G,連接BGFH于點M,當(dāng)GB平分∠CGE,BM=AE=8,S四邊形EFMG=________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥ABE,F(xiàn)AC上,BD=DF;

          證明:(1)CF=EB.

          (2)AB=AF+2EB.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知ABCD的兩邊ABAD的長是關(guān)于x的方程x2mx0的兩個實數(shù)根.

          (1)當(dāng)m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;

          (2)AB的長為2,那么ABCD的周長是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,拋物線y=﹣x2+bx+c與x軸交于A(2,0),B(﹣4,0)兩點.

          (1)求該拋物線的解析式;

          (2)若拋物線交y軸于C點,在該拋物線的對稱軸上是否存在點Q,使得QAC的周長最小?若存在,求出Q點的坐標(biāo);若不存在,請說明理由.

          (3)在拋物線的第二象限圖象上是否存在一點P,使得PBC的面積最大?若存在,求出點P的坐標(biāo)及PBC的面積最大值;若不存,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別相交于點A、B,再將△A0B沿直錢CD折疊,使點A與點B重合.折痕CD與x軸交于點C,與AB交于點D.

          (1)點A的坐標(biāo)為  ;點B的坐標(biāo)為  ;

          (2)求OC的長度,并求出此時直線BC的表達式;

          (3)直線BC上是否存在一點M,使得△ABM的面積與△ABO的面積相等?若存在,請直接寫出點M的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.網(wǎng)格中有一個格點ABC(即三角形的頂點都在格點上).

          1)在圖中作出ABC關(guān)于直線l對稱的A1B1C1 (要求AA1BB1,CC1相對應(yīng));

          2)求ABC的面積;

          3)在直線l上找一點P,使得PAC的周長最。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀材料:

          、、……兩個含有二次根式的代數(shù)式相乘,積不含有二次根式,我們稱這兩個代數(shù)式互為有理化因式.例如,等都是互為有理化因式.

          在進行二次根式計算時,利用有理化因式,可以化去分母中的根號。

          例如:;

          解答下列問題:

          1 互為有理化因式,將分母有理化得

          2)計算:

          3)觀察下面的變形規(guī)律并解決問題:

          ,,,……為正整數(shù),請你猜想

          ②計算:

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(1)如圖所示,已知∠AOB90°BOC30°,OM平分∠AOC,ON平分∠BOC求∠MON的度數(shù);

          (2)如果(1)中∠AOBα其他條件不變,求∠MON的度數(shù);

          (3)如果(1)中∠BOCβ(β為銳角),其他條件不變求∠MON的度數(shù);

          (4)(1)(2)(3)的結(jié)果中你能看出什么規(guī)律?

          查看答案和解析>>

          同步練習(xí)冊答案