日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. △ABC是等邊三角形,點(diǎn)D是射線上BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B,C重合,△ADE是以AD為邊的等邊三角形,過(guò)點(diǎn)E作BC的平行線,分別交射線AB,AC于點(diǎn)F,G,連接BE。  (10′)
          如圖1所示,當(dāng)點(diǎn)D在線段BC上時(shí)。(1)求證:△AEB≌△ADC;(2)探究四邊形BCGE是哪種特殊的四邊形,并說(shuō)明理由。如圖2所示,當(dāng)點(diǎn)D在BC的延長(zhǎng)線上時(shí),直接寫出(1)中的兩個(gè)結(jié)論是否成立。
          (1)①略    ② 平行四邊形   (2)①②都成立
          (1)①利用等邊三角尺是性質(zhì)得到AE=AD,AB=AC,∠EAD=∠BAC=60°,然后得到∠EAB=∠DAC,從而證明兩個(gè)三角形全等;
          ② 根據(jù)全等三角形得到∠ABE=∠BAC,從而得到EB∥GC.再根據(jù)EG∥BC判定四邊形BCGE是平行四邊形即可;
          (2)①②都成立
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          如圖,請(qǐng)?jiān)谙铝兴膫(gè)關(guān)系①,②,③,④中,選出兩個(gè)恰當(dāng)?shù)年P(guān)系作為條件,推出四邊形是平行四邊形      ★    .(寫出一種即可)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          如圖,大正方形中有2個(gè)小正方形,如果它們的面積分別是S1,S2,那么S1,S2的比值是(   )
          A.1:1B.8:9C.9:8D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          梯形的中位線長(zhǎng)為15cm,一條對(duì)角線把中位線分成3:2兩部分,那么梯形的上底、下底的長(zhǎng)分別是__________________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          矩形具有而菱形不具有的性質(zhì)是( 。
           
          A.
          對(duì)角線相等
          B.
          對(duì)角線互相垂直
           
          C.
          對(duì)角線互相平分
          D.
          對(duì)角線平分一組對(duì)角

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          如圖,P是正方形ABCD內(nèi)一點(diǎn),連接PA、PB、PC、PD,若△PAB是等邊三角形,則∠DPA為
           A. 600          B. 750         C. 800        D. 900                       

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          如圖,已知正方形ABED、正方形BCFE,現(xiàn)從A、B、C、D、E、F六個(gè)點(diǎn)中任取三點(diǎn),使得這三個(gè)點(diǎn)構(gòu)成直角三角形,這樣的直角三角形有:

          A、16個(gè)     B、 14個(gè)      C、 12個(gè)     D、 10個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,在梯形ABCD中, AB∥DC,∠BCD=90°,且AB=1,BC=2,
          tan∠ADC=2.
          ⑴求證:DC=BC;
          ⑵E是梯形內(nèi)的一點(diǎn),F(xiàn)是梯形外的一點(diǎn),且∠EDC=∠FBC,DE=BF,試判斷△ECF的形狀,并證明你的結(jié)論;⑶在⑵的條件下,當(dāng)BE:CE=1:2,∠BEC=135°時(shí),求sin∠BFE的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          如圖,在正方形紙片ABCD中,對(duì)角線AC、BD交于點(diǎn)O,折疊正方形紙片,使AD落在BD上,點(diǎn)A恰好與BD上的點(diǎn)F重合,展開(kāi)后,折痕DE分別交AB、AC于點(diǎn)E、G,連接GF。下列結(jié)論中正確的有        
          ;②;③四邊形AEFG是菱形;④BE=2OG。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案