日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 探究問(wèn)題
          (1)方法感悟:
          一班同學(xué)到野外上數(shù)學(xué)活動(dòng)課,為測(cè)量池塘兩端A、B的距離,設(shè)計(jì)了如下方案:
          方案(Ⅰ)如圖1,先在平地上取一個(gè)可直接到達(dá)A、B的點(diǎn)C,連接AC、BC,并分別延長(zhǎng)AC至D,BC至E,使DC=AC,EC=BC,最后測(cè)出DE的距離即為AB的長(zhǎng);感悟解題方法,并完成下列填空:
          在如圖所示的兩個(gè)三角形△DEC和△ABC中:DC=AC,∠______=∠______(對(duì)頂角相等),EC=BC,∴△DEC≌△ABC______,∴DE=AB(全等三角形對(duì)應(yīng)邊相等),即DE的距離即為AB的長(zhǎng).
          (2)方法遷移:
          方案(Ⅱ)如圖2,先過(guò)B點(diǎn)作AB的垂線BF,再在BF上取C、D兩點(diǎn)使BC=CD,接著過(guò)D作BD的垂線DE,交AC的延長(zhǎng)線于E,則測(cè)出DE的長(zhǎng)即為AB的距離.請(qǐng)你說(shuō)明理由.  
          (3)問(wèn)題拓展:
          方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是______;若僅滿足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?______.

          精英家教網(wǎng)
          (1)在如圖所示的兩個(gè)三角形△DEC和△ABC中:DC=AC,∠ACB=∠DCE(對(duì)頂角相等),EC=BC,∴△DEC≌△ABC (SAS),∴DE=AB(全等三角形對(duì)應(yīng)邊相等),即DE的距離即為AB的長(zhǎng).

          (2)∵AB⊥BF,ED⊥FB,
          ∴∠ABC=∠EDC=90°,
          在△ABC和△EDC中
          ∠ABC=∠EDC
          ∠BCA=∠DCE
          BC=CD
          ,
          ∴△ABC≌△EDC(AAS),
          ∴AB=ED;

          (3)作BF⊥AB,ED⊥BF的目的是 作∠ABC=∠EDC=90°;
          如果∠ABD=∠BDE≠90°,仍可以利用AAS證明△ABC≌△EDC,則也可得到AB=ED.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          探究問(wèn)題:
          (1)方法感悟:
          如圖①,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
          感悟解題方法,并完成下列填空:
          將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG,此時(shí)AB與AD重合,由旋轉(zhuǎn)可得:
          AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
          ∴∠ABG+∠ABF=90°+90°=180°,
          因此,點(diǎn)G,B,F(xiàn)在同一條直線上.
          ∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
          ∵∠1=∠2,∴∠1+∠3=45°.
          即∠GAF=∠
           

          又AG=AE,AF=AF
          ∴△GAF≌
           

           
          =EF,故DE+BF=EF.
          (2)方法遷移:
          如圖②,將Rt△ABC沿斜邊翻折得到△ADC,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且∠EAF=
          1
          2
          ∠DAB.試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想.
          (3)問(wèn)題拓展:
          如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點(diǎn),滿足∠EAF=
          1
          2
          ∠DAB,試猜想當(dāng)∠B與∠D滿足什么關(guān)系時(shí),可使得DE+BF=EF.請(qǐng)直接寫(xiě)出你的猜想(不必說(shuō)明理由).
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          探究問(wèn)題
          (1)方法感悟:
          一班同學(xué)到野外上數(shù)學(xué)活動(dòng)課,為測(cè)量池塘兩端A、B的距離,設(shè)計(jì)了如下方案:
          方案(Ⅰ)如圖1,先在平地上取一個(gè)可直接到達(dá)A、B的點(diǎn)C,連接AC、BC,并分別延長(zhǎng)AC至D,BC至E,使DC=AC,EC=BC,最后測(cè)出DE的距離即為AB的長(zhǎng);感悟解題方法,并完成下列填空:
          解:在如圖所示的兩個(gè)三角形△DEC和△ABC中:DC=AC,∠
          ACB
          ACB
          =∠
          DCE
          DCE
          (對(duì)頂角相等),EC=BC,∴△DEC≌△ABC
          (SAS)
          (SAS)
          ,∴DE=AB(全等三角形對(duì)應(yīng)邊相等),即DE的距離即為AB的長(zhǎng).
          (2)方法遷移:
          方案(Ⅱ)如圖2,先過(guò)B點(diǎn)作AB的垂線BF,再在BF上取C、D兩點(diǎn)使BC=CD,接著過(guò)D作BD的垂線DE,交AC的延長(zhǎng)線于E,則測(cè)出DE的長(zhǎng)即為AB的距離.請(qǐng)你說(shuō)明理由.  
          (3)問(wèn)題拓展:
          方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是
          作∠ABC=∠EDC=90°
          作∠ABC=∠EDC=90°
          ;若僅滿足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?
          成立
          成立

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年度臨沂市費(fèi)縣七年級(jí)第二學(xué)期期末檢測(cè)數(shù)學(xué) 題型:解答題

          (11·永州)(本題滿分10分)探究問(wèn)題:
          ⑴方法感悟:
          如圖①,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
          感悟解題方法,并完成下列填空:
          將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG,此時(shí)AB與AD重合,由旋轉(zhuǎn)可得:
          AB="AD,BG=DE," ∠1=∠2,∠ABG=∠D=90°,
          ∴∠ABG+∠ABF=90°+90°=180°,
          因此,點(diǎn)G,B,F(xiàn)在同一條直線上.
          ∵∠EAF="45° " ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
          ∵∠1=∠2,   ∴∠1+∠3=45°.
          即∠GAF=∠_________.
          又AG=AE,AF=AF
          ∴△GAF≌_______.
          ∴_________=EF,故DE+BF=EF.

          ⑵方法遷移:
          如圖②,將沿斜邊翻折得到△ADC,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想.

          ⑶問(wèn)題拓展:
          如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點(diǎn),滿足,試猜想當(dāng)∠B與∠D滿足什么關(guān)系時(shí),可使得DE+BF=EF.請(qǐng)直接寫(xiě)出你的猜想(不必說(shuō)明理由).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          探究問(wèn)題
          (1)方法感悟:
          一班同學(xué)到野外上數(shù)學(xué)活動(dòng)課,為測(cè)量池塘兩端A、B的距離,設(shè)計(jì)了如下方案:
          方案(Ⅰ)如圖1,先在平地上取一個(gè)可直接到達(dá)A、B的點(diǎn)C,連接AC、BC,并分別延長(zhǎng)AC至D,BC至E,使DC=AC,EC=BC,最后測(cè)出DE的距離即為AB的長(zhǎng);感悟解題方法,并完成下列填空:
          解:在如圖所示的兩個(gè)三角形△DEC和△ABC中:DC=AC,∠______=∠______(對(duì)頂角相等),EC=BC,∴△DEC≌△ABC______,∴DE=AB(全等三角形對(duì)應(yīng)邊相等),即DE的距離即為AB的長(zhǎng).
          (2)方法遷移:
          方案(Ⅱ)如圖2,先過(guò)B點(diǎn)作AB的垂線BF,再在BF上取C、D兩點(diǎn)使BC=CD,接著過(guò)D作BD的垂線DE,交AC的延長(zhǎng)線于E,則測(cè)出DE的長(zhǎng)即為AB的距離.請(qǐng)你說(shuō)明理由. 
          (3)問(wèn)題拓展:
          方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是______;若僅滿足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?______.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案