日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:如圖,二次函數(shù)y=ax2-2ax+c(a≠0)的圖象與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(4,0).
          (1)求該二次函數(shù)的關(guān)系式;
          (2)寫(xiě)出該二次函數(shù)的對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo);
          (3)點(diǎn)Q是線段AB上的動(dòng)點(diǎn),過(guò)點(diǎn)Q作QE∥AC,交BC于點(diǎn)E,連接CQ.當(dāng)△CQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
          (4)若平行于x軸的動(dòng)直線l與該拋物線交于點(diǎn)P,與直線AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(2,0).問(wèn):是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
          分析:(1)根據(jù)A,C兩點(diǎn)坐標(biāo),利用待定系數(shù)法求二次函數(shù)解析式即可;
          (2)根據(jù)配方法求出二次函數(shù)的頂點(diǎn)坐標(biāo)和對(duì)稱(chēng)軸即可;
          (3)利用相似三角形的性質(zhì)得出S△CQE=
          1
          2
          x×4-
          1
          3
          x2=-
          1
          3
          x2+2x,進(jìn)而求出即可;
          (4)利用圖象以及等腰三角形的性質(zhì)假設(shè)若DO=DF時(shí)以及當(dāng)FO=FD和當(dāng)DF=OD時(shí)分別得出F點(diǎn)的坐標(biāo),將縱坐標(biāo)代入二次函數(shù)解析式即可求出P點(diǎn)坐標(biāo).
          解答:解:(1)∵點(diǎn)C(0,4),
          ∴c=4,
          ∵點(diǎn)A的坐標(biāo)為(4,0),
          ∴0=16a-8a+4,
          ∴a=-
          1
          2
          ,
          ∴y=-
          1
          2
          x2+x+4;

          (2)y=-
          1
          2
          x2+x+4
          =-
          1
          2
          (x2-2x)+4,
          =-
          1
          2
          [(x2-2x+1)-1]+4,
          =-
          1
          2
          (x-1)2+
          9
          2

          ∴該二次函數(shù)的對(duì)稱(chēng)軸為:直線x=1,頂點(diǎn)坐標(biāo)為:(1,
          9
          2
          );

          (3)∵二次函數(shù)的對(duì)稱(chēng)軸為:直線x=1,點(diǎn)A的坐標(biāo)為(4,0),
          ∴B(-2,0,),AB=6,
          S△ABC=
          1
          2
          ×6×4=12,
          設(shè)BQ=x,
          ∵EQ∥AC,
          ∴△BEQ∽△BCA,
          ∴(
          BQ
          AB
          2=
          S△BEQ
          S△ABC
          =(
          x
          6
          2
          ∴S△BEQ=
          x2
          36
          ×12=
          1
          3
          x2,
          ∴S△CQE=
          1
          2
          x×4-
          1
          3
          x2=-
          1
          3
          x2+2x,
          當(dāng)x=-
          b
          2a
          =
          2
          1
          3
          =3時(shí),S△CQE面積最大,
          ∴Q點(diǎn)坐標(biāo)為(1,0);

          (4)存在,
          在△ODF中,
          ①若DO=DF,∵A(4,0),D(2,0),
          ∴AD=OD=DF=2,
          又∵在Rt△AOC中,OA=OC=4,
          ∴∠OAC=45°,
          ∴∠DFA=∠OAC=45°,
          ∴∠ADF=90°,此時(shí),點(diǎn)F的坐標(biāo)為:(2,2),
          由-
          1
          2
          x2+x+4=2,
          解得:x1=1+
          5
          ,x2=1-
          5

          此時(shí),點(diǎn)P的坐標(biāo)為:P(1+
          5
          ,2)或P(1-
          5
          ,2);
          ②若FO=FD,過(guò)點(diǎn)F作FM⊥x軸于點(diǎn)M,
          由等腰三角形的性質(zhì)得出:
          OM=
          1
          2
          OD=1,
          ∴AM=3,
          ∴在等腰三角形△AMF中,MF=MA=3,
          ∴F(1,3),
          由-
          1
          2
          x2+x+4=3,
          解得:x1=1+
          3
          ,x2=1-
          3
          ,
          此時(shí),點(diǎn)P的坐標(biāo)為:P(1+
          3
          ,3)或P(1-
          3
          ,3);
          ③若OD=OF,∵OA=OC=4,且∠AOC=90°,
          ∴AC=4
          2
          ,
          ∴點(diǎn)O到AC的距離為2
          2
          ,而OF=OD=2<2
          2
          ,
          ∴此時(shí),不存在這樣的直線l,使得△ODF是等腰三角形.
          綜上所述:存在這樣的直線l,使得△ODF是等腰三角形,所求點(diǎn)P的坐標(biāo)為:P(1+
          5
          ,2)或P(1-
          5
          ,2)或P(1+
          3
          ,3)或P(1-
          3
          ,3).
          點(diǎn)評(píng):此題主要考查了二次函數(shù)的綜合應(yīng)用和相似三角形的性質(zhì)和等腰三角形的性質(zhì)等知識(shí),根據(jù)已知得出(
          BQ
          AB
          2=
          S△BEQ
          S△ABC
          =(
          x
          6
          2以及分類(lèi)討論得出P點(diǎn)的坐標(biāo)是解題關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知:如圖,二次函數(shù)y=x2-4的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的精英家教網(wǎng)左邊),與y軸交于點(diǎn)C.直線x=m(m>2)與x軸交于點(diǎn)D.
          (1)求A、B、C三點(diǎn)的坐標(biāo);
          (2)在直線x=m(m>2)上有一點(diǎn)P(點(diǎn)P在第一象限),使得以P、D、B為頂點(diǎn)的三角形與以B、C、O為頂點(diǎn)的三角形相似,求P點(diǎn)的坐標(biāo)(用含m的代數(shù)式表示);
          (3)在(2)成立的條件下,試問(wèn):拋物線y=x2-4上是否存在一點(diǎn)Q,使得四邊形ABPQ為平行四邊形?如果存在這樣的點(diǎn)Q,請(qǐng)求出m的值;如果不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知:如圖,二次函數(shù)y=x2+(2k-1)x+k+1的圖象與x軸相交于O、A兩點(diǎn).
          (1)求這個(gè)二次函數(shù)的解析式;
          (2)在這條拋物線的對(duì)稱(chēng)軸右邊的圖象上有一點(diǎn)B,使銳角△AOB的面積等于3.求點(diǎn)B的坐標(biāo);
          (3)對(duì)于(2)中的點(diǎn)B,在拋物線上是否存在點(diǎn)P,使∠POB=90°?若存在,求出點(diǎn)P的坐標(biāo),并求出△POB的面積;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知,如圖,二次函數(shù)y=ax2+2ax-3a(a≠0)圖象的頂點(diǎn)為H,與x軸交于A、B兩點(diǎn)(B在A點(diǎn)右側(cè)),點(diǎn)H、B關(guān)于直線l:y=
          3
          3
          x+
          3
          對(duì)稱(chēng).
          (1)求A、B兩點(diǎn)坐標(biāo),并證明點(diǎn)A在直線l上;
          (2)求二次函數(shù)解析式;
          (3)過(guò)點(diǎn)B作直線BK∥AH交直線l于K點(diǎn),M、N分別為直線AH和直線l上的兩個(gè)動(dòng)點(diǎn),連接HN、NM、MK,求HN+NM+MK和的最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•閘北區(qū)一模)已知:如圖,二次函數(shù)y=
          2
          3
          x2-
          4
          3
          x-
          16
          3
          的圖象與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),拋物線的頂點(diǎn)為Q,直線QB與y軸交于點(diǎn)E.
          (1)求點(diǎn)E的坐標(biāo);
          (2)在x軸上方找一點(diǎn)C,使以點(diǎn)C、O、B為頂點(diǎn)的三角形與△BOE相似,請(qǐng)直接寫(xiě)出點(diǎn)C的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案