日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 定義:在平面內(nèi),我們把既有大小又有方向的量叫做平面向量.平面向量可以用有向線段表示,有向線段的長(zhǎng)度表示向量的大小,有向線段的方向表示向量的方向.其中大小相等,方向相同的向量叫做相等向量.
          如以正方形ABCD的四個(gè)頂點(diǎn)中某一點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出8個(gè)不同的向量:
          AB
          、
          BA
          、
          AC
          、
          CA
          AD
          、
          DA
          、
          BD
          、
          DB
          (由于
          AB
          DC
          是相等向量,因此只算一個(gè)).
          (1)作兩個(gè)相鄰的正方形(如圖1).以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為f(2),試直接寫(xiě)出f(2)的值;
          (2)作n個(gè)相鄰的正方形(如圖2)“一字型”排開(kāi).以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為f(n),試直接寫(xiě)出f(n)的值.
          精英家教網(wǎng)
          分析:因?yàn)閒(1)=8,f(2)=14,f(3)=20,f(4)=26,所以得到規(guī)律為:f(n)=6n+2.
          解答:解:(1)作兩個(gè)相鄰的正方形,以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)f(2)=14;

          (2)分別求出作兩個(gè)、三個(gè)、四個(gè)相鄰的正方形(如圖1).以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同的向量個(gè)數(shù),找出規(guī)律,
          ∵f(1)=6×1+2=8,f(2)=6×2+2=14,f(3)=6×3+2=20,f(4)=6×4+2=26,
          ∴f(n)=6n+2.
          點(diǎn)評(píng):此題考查了向量的知識(shí).注意解此題的關(guān)鍵是找到規(guī)律:f(n)=6n+2.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          定義:在平面內(nèi),我們把既有大小又有方向的量叫做平面向量.平面向量可以用有向線段表示,有向線段的長(zhǎng)度表示向量的大小,有向線段的方向表示向量的方向.其中大小相等,方向相同的向量叫做相等向量.
          如以正方形ABCD的四個(gè)頂點(diǎn)中某一點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出8個(gè)不同的向量:
          AB
          、
          BA
          、
          AC
          、
          CA
          、
          AD
          、
          DA
          BD
          、
          DB
          (由于
          AB
          DC
          是相等向量,因此只算一個(gè)).
          (1)作兩個(gè)相鄰的正方形(如圖一).以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為f(2),試求f(2)的值;
          精英家教網(wǎng)
          (2)作n個(gè)相鄰的正方形(如圖二)“一字型”排開(kāi).以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為f(n),試求f(n)的值;
          精英家教網(wǎng)
          (3)作2×3個(gè)相鄰的正方形(如圖三)排開(kāi).以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為f(2×3),試求f(2×3)的值;
          精英家教網(wǎng)
          (4)作m×n個(gè)相鄰的正方形(如圖四)排開(kāi).以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為f(m×n),試求f(m×n)的值.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2010年安徽省蚌埠市二中高一自主招生數(shù)學(xué)試卷(解析版) 題型:解答題

          定義:在平面內(nèi),我們把既有大小又有方向的量叫做平面向量.平面向量可以用有向線段表示,有向線段的長(zhǎng)度表示向量的大小,有向線段的方向表示向量的方向.其中大小相等,方向相同的向量叫做相等向量.
          如以正方形ABCD的四個(gè)頂點(diǎn)中某一點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出8個(gè)不同的向量:、、、、(由于是相等向量,因此只算一個(gè)).
          (1)作兩個(gè)相鄰的正方形(如圖一).以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為f(2),試求f(2)的值;

          (2)作n個(gè)相鄰的正方形(如圖二)“一字型”排開(kāi).以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為f(n),試求f(n)的值;

          (3)作2×3個(gè)相鄰的正方形(如圖三)排開(kāi).以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為f(2×3),試求f(2×3)的值;

          (4)作m×n個(gè)相鄰的正方形(如圖四)排開(kāi).以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為f(m×n),試求f(m×n)的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2011年湖南省長(zhǎng)沙市雅禮中學(xué)自主招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

          定義:在平面內(nèi),我們把既有大小又有方向的量叫做平面向量.平面向量可以用有向線段表示,有向線段的長(zhǎng)度表示向量的大小,有向線段的方向表示向量的方向.其中大小相等,方向相同的向量叫做相等向量.
          如以正方形ABCD的四個(gè)頂點(diǎn)中某一點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出8個(gè)不同的向量:、、、、、(由于是相等向量,因此只算一個(gè)).
          (1)作兩個(gè)相鄰的正方形(如圖一).以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為f(2),試求f(2)的值;

          (2)作n個(gè)相鄰的正方形(如圖二)“一字型”排開(kāi).以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為f(n),試求f(n)的值;

          (3)作2×3個(gè)相鄰的正方形(如圖三)排開(kāi).以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為f(2×3),試求f(2×3)的值;

          (4)作m×n個(gè)相鄰的正方形(如圖四)排開(kāi).以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為f(m×n),試求f(m×n)的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          定義:在平面內(nèi),我們把既有大小又有方向的量叫做平面向量。平面向量可以用有向線段表示,有向線段的長(zhǎng)度表示向量的大小,有向線段的方向表示向量的方向。其中大小相等,方向相同的向量叫做相等向量。

          如以正方形的四個(gè)頂點(diǎn)中某一點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出8個(gè)不同

          的向量:、、 、、(由于是相等向量,因此只算一個(gè))。

          ⑴ 作兩個(gè)相鄰的正方形(如圖)。以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為,試求的值;

           

           


          ⑵ 作個(gè)相鄰的正方形(如圖)“一字型”排開(kāi)。以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為,試求的值;

                                                                     

          共n個(gè)正方形

          ⑶ 作個(gè)相鄰的正方形(如圖)排開(kāi)。以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量, 可以作出不同向量的個(gè)數(shù)記為,試求的值;

                                              

          ⑷ 作個(gè)相鄰的正方形(如圖四)排開(kāi)。以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量, 可以作出不同向量的個(gè)數(shù)記為,試求的值。

          m

          個(gè)正方形相連

           
           


          查看答案和解析>>

          同步練習(xí)冊(cè)答案