日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 閱讀下列材料:


          解答問題:
          (1)在式中,第六項為         ,第項為          ,上述求和的想法是通過逆用          法則,將式中各分數(shù)轉(zhuǎn)化為兩個實數(shù)之差,使得除首末兩項外的中間各項可以           從而達到求和的目的.
          (2)解方程.

          (1),分式的加減法,相互抵消。
          (2)經(jīng)檢驗x=-12和x=2為原方程的解

          解析

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:閱讀理解

          閱讀下列材料并解答后面的問題:利用完全平方公式(a±b)2=a2±2ab+b2,通過配方可對a2+b2進行適當?shù)淖冃危鏰2+b2=(a+b)2-2ab或a2+b2=(a-b)2+2ab.從而使某些問題得到解決.例:已知a+b=5,ab=3,求a2+b2的值.
          解:a2+b2=(a+b)2-2ab=52-2×3=19.
          問題:(1)已知a+
          1
          a
          =6,則a2+
          1
          a2
          =
           
          ;
          (2)已知a-b=2,ab=3,求a4+b4的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:閱讀理解

          閱讀下列材料:
          為解方程(x2-1)2-5(x2-1)+4=0,我們可以將x2-1看作一個整體,設x2-1=y,則原方程可化為y2-5y+4=0,解得y1=1,y2=4.
          當y1=1時,x2-1=1,∴x=±
          2
          ;當y2=4時,x2-1=4,∴x=±
          5

          因此原方程的解為:x1=
          2
          ,x2=-
          2
          ,x3=
          5
          ,x4=-
          5

          (1)已知方程
          1
          x2-2x
          =x2-2x-3
          ,如果設x2-2x=y,那么原方程可化為
           
          (寫成關于y的一元二次方程的一般形式).
          (2)根據(jù)閱讀材料,解方程:x(x+3)(x2+3x+2)=24.

          查看答案和解析>>

          科目:初中數(shù)學 來源:學習周報 數(shù)學 北師大九年級版 2009-2010學年 第5期 總第161期 北師大版 題型:044

          請閱讀下列材料:

          為解方程(x2-1)2-5(x2-1)+4=0,我們可以將x2-1視為一個整體,然后設x2-1=y(tǒng),則原方程可化為y2-5y+4=0,①解得y1=1,y2=4.

          當y=1時,即x2-1=1,解得x=±;當y=4時,即x2-1=4,解得x=±

          所以原方程的解共有四個:x1,x2=-,x3,x4=-

          請解答下列問題:

          (1)由原方程得到方程①的過程中,運用換元的方法達到了________的目的,這是數(shù)學中轉(zhuǎn)化思想的運用;

          (2)運用這種方法解方程:(x2-2x)2-11(x2-2x)+24=0.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          閱讀下列材料:
          為解方程(x2-1)2-5(x2-1)+4=0,我們可以將x2-1看作一個整體,設x2-1=y,則原方程可化為y2-5y+4=0,解得y1=1,y2=4.
          當y1=1時,x2-1=1,∴數(shù)學公式;當y2=4時,x2-1=4,∴數(shù)學公式
          因此原方程的解為:數(shù)學公式
          (1)已知方程數(shù)學公式,如果設x2-2x=y,那么原方程可化為________(寫成關于y的一元二次方程的一般形式).
          (2)根據(jù)閱讀材料,解方程:x(x+3)(x2+3x+2)=24.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2008年江蘇省鎮(zhèn)江市丹陽市橫塘中學中考數(shù)學模擬試卷(解析版) 題型:解答題

          閱讀下列材料:
          為解方程(x2-1)2-5(x2-1)+4=0,我們可以將x2-1看作一個整體,設x2-1=y,則原方程可化為y2-5y+4=0,解得y1=1,y2=4.
          當y1=1時,x2-1=1,∴;當y2=4時,x2-1=4,∴
          因此原方程的解為:
          (1)已知方程,如果設x2-2x=y,那么原方程可化為______(寫成關于y的一元二次方程的一般形式).
          (2)根據(jù)閱讀材料,解方程:x(x+3)(x2+3x+2)=24.

          查看答案和解析>>

          同步練習冊答案