【題目】如圖,直線與雙曲線相交于點A(m,3),與x軸交于點C.
(1)求雙曲線解析式;
(2)點P在x軸上,如果△ACP的面積為3,求點P的坐標.
【答案】(1);(2)(﹣2,0)或(﹣6,0).
【解析】試題分析:(1)把A坐標代入直線解析式求出m的值,確定出A坐標,即可確定出雙曲線解析式;
(2)設P(x,0),表示出PC的長,高為A縱坐標,根據(jù)三角形ACP面積求出x的值,確定出P坐標即可.
解:(1)把A(m,3)代入直線解析式得:3=m+2,即m=2,
∴A(2,3),
把A坐標代入y=,得k=6,
則雙曲線解析式為y=;
(2)對于直線y=x+2,令y=0,得到x=﹣4,即C(﹣4,0),
設P(x,0),可得PC=|x+4|,
∵△ACP面積為3,
∴|x+4|3=3,即|x+4|=2,
解得:x=﹣2或x=﹣6,
則P坐標為(﹣2,0)或(﹣6,0).
科目:初中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個正方形和兩對全等的直角三角形,得到一個恒等式,后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的長方形由兩個這樣的圖形拼成,若,
,則該長方形的面積為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“三等分任意角”是數(shù)學史上一個著名問題,經(jīng)過無數(shù)人探索,現(xiàn)在已經(jīng)確信,僅用圓規(guī)直尺是不可能做出的.在探索過程中,我們發(fā)現(xiàn),可以利用一些特殊的圖形,把一個任意角三等分.如圖:在∠MAN的邊上任取一點B,過點B作BC⊥AN于點C,并作BC的垂線BF,連接AF,E是AF上一點,當AB=BE=EF時,有∠FAN=∠MAN,請你證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】經(jīng)過
頂點
的一條直線,
.
分別是直線
上兩點,且
.
(1)若直線經(jīng)過
的內(nèi)部,且
在射線
上,請解決下面兩個問題:
①如圖1,若,
,
則
;
(填“
”,“
”或“
”);
②如圖2,若,請?zhí)砑右粋關于
與
關系的條件 ,使①中的兩個結論仍然成立,并證明兩個結論成立.
(2)如圖3,若直線經(jīng)過
的外部,
,請?zhí)岢?/span>
三條線段數(shù)量關系的合理猜想(不要求證明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B分別在x軸、y軸上,點O關于AB的對稱點C在第一象限,將△ABC沿x軸正方向平移k個單位得到△DEF(點B與E是對應點),點F落在雙曲線y=上,連結BE交該雙曲線于點G.∠BAO=60°,OA=2GE,則k的值為 ________ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)請你數(shù)一數(shù),圖中有______個小于平角的角;
(2)求出∠BOD的度數(shù);
(3)請通過計算說明OE是否平分∠BOC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在四邊形ABCD中,點E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.
(1)求證:AC=CD;
(2)若AC=AE,求∠DEC的度數(shù).
【答案】(1)證明見解析;(2)112.5°.
【解析】試題分析: 根據(jù)同角的余角相等可得到
結合條件
,再加上
可證得結論;
根據(jù)
得到
根據(jù)等腰三角形的性質(zhì)得到
由平角的定義得到
試題解析: 證明:
在△ABC和△DEC中, ,
(2)∵∠ACD=90°,AC=CD,
∴∠1=∠D=45°,
∵AE=AC,
∴∠3=∠5=67.5°,
∴∠DEC=180°-∠5=112.5°.
【題型】解答題
【結束】
21
【題目】一個零件的形狀如圖所示,工人師傅按規(guī)定做得∠B=90°,
AB=3,BC=4,CD=12,AD=13,假如這是一塊鋼板,你能幫工人師傅計算一下這塊鋼板的面積嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】黨的十八大提出,倡導富強、民主、文明、和諧,倡導自由、平等、公正、法治,倡導愛國、敬業(yè)、誠信、友善,積極培育和踐行社會主義核心價值觀,這24個字是社會主義核心價值觀的基本內(nèi)容.其中:
“富強、民主、文明、和諧”是國家層面的價值目標;
“自由、平等、公正、法治”是社會層面的價值取向;
“愛國、敬業(yè)、誠信、友善”是公民個人層面的價值準則.
小光同學將其中的“文明”、“和諧”、“自由”、“平等”的文字分別貼在4張硬紙板上,制成如右圖所示的卡片.將這4張卡片背面朝上洗勻后放在桌子上,從中隨機抽取一張卡片,不放回,再隨機抽取一張卡片.
(1)小光第一次抽取的卡片上的文字是國家層面價值目標的概率是 ;
(2)請你用列表法或畫樹狀圖法,幫助小光求出兩次抽取卡片上的文字一次是國家層面價值目標、一次
是社會層面價值取向的概率(卡片名稱可用字母表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小華某天上午9時騎自行車離開家,17時回家,他有意描繪了離家的距離與時間的變化情況,如圖所示.
(1)圖象表示了哪兩個變量的關系?哪個是自變量?哪個是因變量?
(2)10時和11時,他分別離家多遠?
(3)他最初到達離家最遠的地方是什么時間?離家多遠?
(4)11時到13時他行駛了多少千米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com