日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,拋物線y=ax2+bx+c經(jīng)過A(1,0)、B(4,0)、C(0,3)三點.

          (1)求拋物線的解析式;
          (2)在拋物線的對稱軸上是否存在點P,使得四邊形PAOC的周長最?若存在,求出四邊形PAOC周長的最小值;若不存在,請說明理由.
          (3)如圖②,點Q是線段OB上一動點,連接BC,在線段BC上是否存在這樣的點M,使△CQM為等腰三角形且△BQM為直角三角形?若存在,求點M的坐標(biāo);若不存在,請說明理由.

          【答案】
          (1)解:根據(jù)題意設(shè)拋物線的解析式為y=a(x﹣1)(x﹣4),

          代入C(0,3)得3=4a,

          解得a= ,

          y= (x﹣1)(x﹣4)= x2 x+3,

          所以,拋物線的解析式為y= x2 x+3


          (2)解:∵A、B關(guān)于對稱軸對稱,如圖1,連接BC,

          ∴BC與對稱軸的交點即為所求的點P,此時PA+PC=BC,

          ∴四邊形PAOC的周長最小值為:OC+OA+BC,

          ∵A(1,0)、B(4,0)、C(0,3),

          ∴OA=1,OC=3,BC= =5,

          ∴OC+OA+BC=1+3+5=9;

          ∴在拋物線的對稱軸上存在點P,使得四邊形PAOC的周長最小,四邊形PAOC周長的最小值為9.


          (3)解:∵B(4,0)、C(0,3),

          ∴直線BC的解析式為y=﹣ x+3,

          ①當(dāng)∠BQM=90°時,如圖2,設(shè)M(a,b),

          ∵∠CMQ>90°,

          ∴只能CM=MQ=b,

          ∵M(jìn)Q∥y軸,

          ∴△MQB∽△COB,

          = ,即 = ,解得b= ,代入y=﹣ x+3得, =﹣ a+3,解得a= ,

          ∴M( , );

          ②當(dāng)∠QMB=90°時,如圖3,

          ∵∠CMQ=90°,

          ∴只能CM=MQ,

          設(shè)CM=MQ=m,

          ∴BM=5﹣m,

          ∵∠BMQ=∠COB=90°,∠MBQ=∠OBC,

          ∴△BMQ∽△BOC,

          = ,解得m= ,

          作MN∥OB,

          = = ,即 = = ,

          ∴MN= ,CN= ,

          ∴ON=OC﹣CN=3﹣ = ,

          ∴M( ),

          綜上,在線段BC上存在這樣的點M,使△CQM為等腰三角形且△BQM為直角三角形,點M的坐標(biāo)為( )或( , ).


          【解析】(1)由拋物線y=ax2+bx+c經(jīng)過A(1,0)、B(4,0)、C(0,3)三點,用待定系數(shù)法求出解析式;(2)由A、B關(guān)于對稱軸對稱,得到BC與對稱軸的交點即為所求的點P,由A(1,0)、B(4,0)、C(0,3),得到OA=1,OC=3,BC =5,OC+OA+BC=1+3+5=9;所以在拋物線的對稱軸上存在點P,使得四邊形PAOC的周長最小,四邊形PAOC周長的最小值為9;(3)由B(4,0)、C(0,3),所以直線BC的解析式為y=﹣ x+3,①當(dāng)∠BQM=90°時,設(shè)M(a,b),由∠CMQ>90°,得到只能CM=MQ=b,因為MQ∥y軸,所以△MQB∽△COB,得到 比例,求出M的坐標(biāo);②當(dāng)∠QMB=90°時,由∠CMQ=90°,得到只能CM=MQ,得到△BMQ∽△BOC,得到比例,解得m= ,由MN∥OB,得到比例,求出M( , ),在線段BC上存在這樣的點M,使△CQM為等腰三角形且△BQM為直角三角形,點M的坐標(biāo)為( , )或( ).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2 400 m,先到終點的人原地休息.已知甲先出發(fā)4 min,在整個步行過程中,甲、乙兩人的距離y(m)與甲出發(fā)的時間t(min)之間的關(guān)系如圖所示,以下結(jié)論:①甲步行的速度為60 m/min;②乙走完全程用了32 min;③乙用16 min追上甲;④乙到達(dá)終點時,甲離終點還有300 m,其中正確的結(jié)論有______(填序號)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標(biāo)為(﹣1,0),其部分圖象如圖所示,

          下列結(jié)論:
          ①4ac<b2;
          ②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;
          ③3a+c>0
          ④當(dāng)y>0時,x的取值范圍是﹣1≤x<3
          ⑤當(dāng)x<0時,y隨x增大而增大
          其中結(jié)論正確的個數(shù)是( )
          A.4個
          B.3個
          C.2個
          D.1個

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某商場銷售每個進(jìn)價為150元和120元的A、B兩種型號的足球,如表是近兩周的銷售情況:

          銷售時段

          銷售數(shù)量

          銷售收入

          A種型號

          B種型號

          第一周

          3

          4

          1200

          第二周

          5

          3

          1450

          進(jìn)價、售價均保持不變,利潤銷售收入進(jìn)貨成本

          (1)A、B兩種型號的足球的銷售單價;

          (2)若商場準(zhǔn)備用不多于8400元的金額再購進(jìn)這兩種型號的足球共60個,求A種型號的足球最多能采購多少個?

          (3)的條件下,商場銷售完這60個足球能否實現(xiàn)利潤超過2550元,若能,請給出相應(yīng)的采購方案;若不能請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,DEABCAB的垂直平分線,分別交AB、BCD、E。AE平分BAC. 設(shè)B = x(單位:度),C = y(單位:度).

          (1)求y隨x變化的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

          (2)請討論當(dāng)ABC為等腰三角形時,B為多少度?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,一動點從原點O出發(fā),沿著箭頭所示方向,每次移動一個單位,依次得到點P1(0,1),P2(1,1)P3(1,0)P4(1,1)P5(2,1)P6(2,0)...,則點P2017的坐標(biāo)是(  )

          A.(672,0)B.(6721)C.(673,1)D.(6730)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】探索研究:已知:△ABC和△CDE都是等邊三角形.

          (1)如圖1,若點A、C、E在一條直線上時,我們可以得到結(jié)論:線段AD與BE的數(shù)量關(guān)系為:   ,線段AD與BE所成的銳角度數(shù)為   °;

          (2)如圖2,當(dāng)點A、C、E不在一條直線上時,請證明(1)中的結(jié)論仍然成立;

          靈活運用:

          如圖3,某廣場是一個四邊形區(qū)域ABCD,現(xiàn)測得:AB=60m,BC=80m,且∠ABC=30°,∠DAC=∠DCA=60°,試求水池兩旁B、D兩點之間的距離.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如圖(1),根據(jù)勾股定理,則a2+b2=c2,若△ABC不是直角三角形,如圖(2)和圖(3),請你類比勾股定理,試猜想a2+b2與c2的關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊答案