日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖(1),在平面直角坐標(biāo)系中,矩形ABCO,B點(diǎn)坐標(biāo)為(4,3),拋物線(xiàn)yx2bxc經(jīng)過(guò)矩形ABCO的頂點(diǎn)B、CDBC的中點(diǎn),直線(xiàn)ADy軸交于E點(diǎn),與拋物線(xiàn)yx2bxc交于第四象限的F點(diǎn).

          (1)求該拋物線(xiàn)解析式與F點(diǎn)坐標(biāo);

          (2)如圖,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿線(xiàn)段CB以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng);

          同時(shí),動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿線(xiàn)段AE以每秒個(gè)單位長(zhǎng)度的速度向終點(diǎn)E運(yùn)動(dòng).過(guò)

          點(diǎn)PPHOA,垂足為H,連接MPMH.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.

          ①問(wèn)EPPHHF是否有最小值,如果有,求出t的值;如果沒(méi)有,請(qǐng)說(shuō)明理由.

          ②若△PMH是等腰三角形,請(qǐng)直接寫(xiě)出此時(shí)t的值.

           

          解:(1)∵矩形ABCO,B點(diǎn)坐標(biāo)為(4,3)

          C點(diǎn)坐標(biāo)為(0,3)

          ∵拋物線(xiàn)yx2bxc經(jīng)過(guò)矩形ABCO的頂點(diǎn)BC

          yx2+2x+3

          設(shè)直線(xiàn)AD的解析式為

          A(4,0)、D(2,3)  ∴

           

          F點(diǎn)在第四象限,∴F(6,-3)

          (2)①∵E(0,6)   ∴CE=CO

          連接CFx軸于H′,過(guò)H′作x軸的垂線(xiàn)交BCP′,當(dāng)P

          運(yùn)動(dòng)到P′,當(dāng)H運(yùn)動(dòng)到H′時(shí), EP+PH+HF的值最小.

          設(shè)直線(xiàn)CF的解析式為

          C(0,3)、F(6,-3) ∴

          當(dāng)y=0時(shí),x=3,∴H′(3,0)  ∴CP=3   ∴t=3

          ②如圖1,過(guò)MMNOAOAN

          ∵△AMN∽△AEO,∴

           ∴AN=t,MN=

          I.如圖1,當(dāng)PM=HM時(shí),MPH的垂直平分線(xiàn)上,

          MN=PH    MN=   t=1

          II.如圖2,當(dāng)PH=HM時(shí),MH=3,MN=,

          HN=OA-AN-OH=4-2t 在Rt△HMN中,

          ,,

            (舍去),

          III.如圖3.如圖4,當(dāng)PH=PM時(shí),PM=3, MT=,PT=BC-CP-BT=在Rt△PMT中,

           ,25t2-100t+64=0 

          ,,1,

           


          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          暑假期間,北關(guān)中學(xué)對(duì)網(wǎng)球場(chǎng)進(jìn)行了翻修,在水平地面點(diǎn)A處新增一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行線(xiàn)路是一條拋物線(xiàn)(如圖所示),在地面上落點(diǎn)為B.有同學(xué)在直線(xiàn)AB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無(wú)蓋的圓柱形桶,試圖讓網(wǎng)球落入桶內(nèi),已知AB=4m,AC=3m,網(wǎng)球飛行最大高度OM=5m,圓柱形桶的直徑為0.5m,高為0.3m(網(wǎng)球精英家教網(wǎng)的體積和圓柱形桶的厚度忽略不計(jì)),以M點(diǎn)為頂點(diǎn),拋物線(xiàn)對(duì)稱(chēng)軸為y軸,水平地面為x軸建立平面直角坐標(biāo)系.
          (1)請(qǐng)求出拋物線(xiàn)的解析式;
          (2)如果豎直擺放5個(gè)圓柱形桶時(shí),網(wǎng)球能不能落入桶內(nèi)?
          (3)當(dāng)豎直擺放圓柱形桶多少個(gè)時(shí),網(wǎng)球可以落入桶內(nèi)?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•武漢模擬)要修建一個(gè)圓形噴水池,在池中心豎直安裝一根2.25m的水管,在水管的頂端安一個(gè)噴水頭,使噴出的拋物線(xiàn)形水柱在與池中心的水平距離為1m處達(dá)到最高,高度為3m.
          (1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,使水管頂端的坐標(biāo)為(0,2.25),水柱的最高點(diǎn)的坐標(biāo)為(1,3),求出此坐標(biāo)系中拋物形水柱對(duì)應(yīng)的函數(shù)關(guān)系式(不要求寫(xiě)取值范圍);
          (2)如圖,在水池底面上有一些同心圓軌道,每條軌道上安裝排水地漏,相鄰軌道之間的寬度為0.3m,最內(nèi)軌道的半徑為rm,其上每0.3m的弧長(zhǎng)上安裝一個(gè)地漏,其它軌道上的個(gè)數(shù)相同,水柱落地處為最外軌道,其上不安裝地漏.求當(dāng)r為多少時(shí)池中安裝的地漏的個(gè)數(shù)最多?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          一個(gè)多面體的面數(shù)(a)和這個(gè)多面體表面展開(kāi)后得到的平面圖形的頂點(diǎn)數(shù)(b),棱數(shù)(c)之間存在一定規(guī)律,如圖1是正三棱柱的表面展開(kāi)圖,它原有5個(gè)面,展開(kāi)后有10個(gè)頂點(diǎn)(重合的頂點(diǎn)只算一個(gè)),14條棱.

          【探索發(fā)現(xiàn)】
          (1)請(qǐng)?jiān)趫D2中用實(shí)線(xiàn)畫(huà)出立方體的一種表面展開(kāi)圖;
          (2)請(qǐng)根據(jù)圖2你所畫(huà)的圖和圖3的四棱錐表面展開(kāi)圖填寫(xiě)下表:
          多面體 面數(shù)a 展開(kāi)圖的頂點(diǎn)數(shù)b 展開(kāi)圖的棱數(shù)c
          直三棱柱 5 10 14
          四棱錐
          5
          5
          8 12
          立方體
          6
          6
          14
          14
          19
          19
          (3)發(fā)現(xiàn):多面體的面數(shù)(a)、表面展開(kāi)圖的頂點(diǎn)數(shù)(b)、棱數(shù)(c)之間存在的關(guān)系式是
          a+b-c=1
          a+b-c=1
          ;
          【解決問(wèn)題】
          (4)已知一個(gè)多面體表面展開(kāi)圖有17條棱,且展開(kāi)圖的頂點(diǎn)數(shù)比原多面體的面數(shù)多2,則這個(gè)多面體的面數(shù)是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 華師大八年級(jí)版 2009-2010學(xué)年 第13期 總第169期 華師大版 題型:044

          工具閱讀:

          在平面上畫(huà)兩條原點(diǎn)重合、互相垂直且具有相同單位長(zhǎng)度的數(shù)軸(如圖),這就建立了平面直角坐標(biāo)系.通常把其中水平的一條數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩數(shù)軸的交點(diǎn)O叫做坐標(biāo)原點(diǎn).

          問(wèn)題探究:如圖1,在6×6的方格紙中,給出如下三種變換:P變換,Q變換,R變換.

          將圖形F沿x軸向右平移1格得圖形F1,稱(chēng)為作1次P變換;

          將圖形F沿y軸翻折得圖形F2,稱(chēng)為作1次Q變換;

          將圖形F繞坐標(biāo)原點(diǎn)順時(shí)針旋轉(zhuǎn)90°得圖形F3,稱(chēng)為作1次R變換.

          規(guī)定:PQ變換表示先作1次Q變換,再作1次P變換;QP變換表示先作1次P變換,再作1次Q變換;Rn變換表示作n次R變換.

          解答下列問(wèn)題:

          (1)作R4變換相當(dāng)于至少作________次Q變換;

          (2)請(qǐng)?jiān)趫D2中畫(huà)出圖形F作R2011變換后得到的圖形F4;

          (3)PQ變換與QP變換是否是相同的變換?請(qǐng)?jiān)趫D3中畫(huà)出PQ變換后得到的圖形F5,在圖4中畫(huà)出QP變換后得到的圖形F6

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶市南開(kāi)中學(xué)九年級(jí)(上)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

          暑假期間,北關(guān)中學(xué)對(duì)網(wǎng)球場(chǎng)進(jìn)行了翻修,在水平地面點(diǎn)A處新增一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行線(xiàn)路是一條拋物線(xiàn)(如圖所示),在地面上落點(diǎn)為B.有同學(xué)在直線(xiàn)AB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無(wú)蓋的圓柱形桶,試圖讓網(wǎng)球落入桶內(nèi),已知AB=4m,AC=3m,網(wǎng)球飛行最大高度OM=5m,圓柱形桶的直徑為0.5m,高為0.3m(網(wǎng)球的體積和圓柱形桶的厚度忽略不計(jì)),以M點(diǎn)為頂點(diǎn),拋物線(xiàn)對(duì)稱(chēng)軸為y軸,水平地面為x軸建立平面直角坐標(biāo)系.
          (1)請(qǐng)求出拋物線(xiàn)的解析式;
          (2)如果豎直擺放5個(gè)圓柱形桶時(shí),網(wǎng)球能不能落入桶內(nèi)?
          (3)當(dāng)豎直擺放圓柱形桶多少個(gè)時(shí),網(wǎng)球可以落入桶內(nèi)?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案