日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知∠ABC=90°,點(diǎn)P為射線BC上任意一點(diǎn)(點(diǎn)P與點(diǎn)B不重合),分別以AB、AP為邊在∠ABC的內(nèi)部作等邊△ABE和△APQ,連接QE并延長交BP于點(diǎn)F.
          (1)試說明:∠AEQ=90°;
          (2)猜想EF與圖中哪條線段相等(不能添加輔助線產(chǎn)生新的線段),并說明理由.
          分析:(1)根據(jù)等邊三角形性質(zhì)得出AB=AE,AP=AQ,∠ABE=∠BAE=∠PAQ=60°,求出∠BAP=∠EAQ,根據(jù)SAS證△BAP≌△EAQ,推出∠AEQ=∠ABC=90°;
          (2)根據(jù)等邊三角形性質(zhì)求出∠ABE=∠AEB=60°,根據(jù)∠ABC=90°=∠AEQ求出∠BEF=∠EBF=30°,即可得出答案.
          解答:(1)證明:∵△ABE和△APQ是等邊三角形,
          ∴AB=AE,AP=AQ,∠ABE=∠BAE=∠PAQ=60°,
          ∴∠BAE-∠PAE=∠PAQ-∠PAE,
          ∴∠BAP=∠EAQ,
          在△BAP和△EAQ中
          AB=AE
          ∠BAP=∠EAQ
          AP=AQ

          ∴△BAP≌△EAQ(SAS),
          ∴∠AEQ=∠ABC=90°;

          (2)解:EF=BF,
          理由是:∵△ABE是等邊三角形,
          ∴∠ABE=∠AEB=60°,
          ∵∠ABC=90°=∠AEQ,
          ∴∠BEF=180°-90°-60°=30°,∠EBF=90°-60°=30°,
          ∴∠EBF=∠BEF,
          ∴EF=BF.
          點(diǎn)評:本題考查了等邊三角形的性質(zhì),全等三角形的性質(zhì)和判定,等腰三角形的性質(zhì)和判定的應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知△ABC的三個頂點(diǎn)分別為A(2,3)、B(3,1)、C(-2,-2).
          (1)請?jiān)趫D中作出△ABC關(guān)于直線x=-1的軸對稱圖形△DEF(A、B、C的對應(yīng)點(diǎn)分別是D、E、F),并直接寫出D、E、F的坐標(biāo);
          (2)求四邊形ABED的面積.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          24、如圖,已知△ABC和△CDE均為等邊三角形,且點(diǎn)B、C、D在同一條直線上,連接AD、BE,交CE和AC分別于G、H點(diǎn),連接GH.
          (1)請說出AD=BE的理由;
          (2)試說出△BCH≌△ACG的理由;
          (3)試猜想:△CGH是什么特殊的三角形,并加以說明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知△ABC,∠ACB=90°,AC=BC,點(diǎn)E、F在AB上,∠ECF=45°.
          (1)求證:△ACF∽△BEC;
          (2)設(shè)△ABC的面積為S,求證:AF•BE=2S;
          (3)試判斷以線段AE、EF、FB為邊的三角形的形狀并給出證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          17、(1)已知線段a,h,用直尺和圓規(guī)作等腰三角形ABC,底邊BC=a,BC邊上的高為h(要求尺規(guī)作圖,不寫作法和證明)
          (2)如圖,已知△ABC,請作出△ABC關(guān)于X軸對稱的圖形.并寫出A、B、C關(guān)于X軸對稱的點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          20、如圖,已知△ABC是銳角三角形,且∠A=50°,高BE、CF相交于點(diǎn)O,求∠BOC的度數(shù).

          查看答案和解析>>

          同步練習(xí)冊答案