日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知四邊形內(nèi)接于,對角線,連接于點.

          1)如圖1,求證:

          2)如圖2,作,交,連接,求證:;

          3)在(2)的條件下,連接,若,,,求.

          【答案】1)詳見解析;(2)詳見解析;(3

          【解析】

          1)延長CO交⊙OK,連接DK,利用圓周角定理得到∠CDK=90°,根據(jù)ACBD及圓周角定理求得∠CBD=CKD,即可求出結(jié)論;

          2)根據(jù)垂直的定義及圓周角定理得到∠BDC=BDF,得到DB垂直平分CH,即可證得結(jié)論;

          3)作EQEFFDQ,ONACN,OMBDM ,先證△AEDBEC都為等腰直角三角形,根據(jù) AEF≌△DEQ求出,勾股定理得AD=,得到AE=ED=12,再利用BE:DE=13及勾股定理求出OC即可.

          1)解:延長CO交⊙OK,連接DK.

          CK為⊙O直徑,

          ∴∠CDK=90°,

          ∴∠OCD+CKD=90°,

          ACBDE

          ∴∠BEC=90°,

          ∴∠ACB+CBD=90°,

          ∵∠CBD=CKD

          ∴∠ACB=OCD ;

          2)∵DFABF,

          ∴∠DFB=90°,

          ACBDE,

          ∴∠AEB=90°,

          ∴∠BAC+DBF=90°,

          ∴∠BDF+DBF=90°,

          ∴∠BDF=BAC,

          ∵∠BAC=BDC,

          ∴∠BDC=BDF,

          ∴∠DHC=DCH,

          DB垂直平分CH,

          BH=BC

          3)作EQEFFDQ,ONACN,OMBDM ,

          BCAD,

          ∴∠BCA=DAC

          ∵∠BCA=ADB,

          ∴∠DAC=ADB

          ∴△AED與△BEC都為等腰直角三角形,

          ∵△AEF≌△DEQ,

          AF=QD=,EF=EQ=

          FQ=,

          ,勾股定理得AD=,

          AE=ED=12

          BEDE=13,

          BE=CE=4,

          BD=AC=16,

          BM=CN=8

          OM=EN=4,

          ON=EM=4,

          OC=.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在邊長為1的正方形網(wǎng)格中,A的坐標(biāo)為(0,0),B的坐標(biāo)為(﹣31).

          1)將線段AB繞點A逆時鐘旋轉(zhuǎn)θ度(0θ180),得到對應(yīng)的線段AE,當(dāng)AECD時,設(shè)在此過程中線段AB所掃過的區(qū)域面積為S,點B所經(jīng)過的路徑長為l,則S   ;l   

          2)是否存在點P,使得線段AB可由線段CD繞點P旋轉(zhuǎn)一個角度而得到?若存在,直接寫出點P的坐標(biāo)(寫出一個即可);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點,∠ABD2BAC,連接CD,過點CCEDB,垂足為E,直徑ABCE的延長線相交于F點.

          1)求證:CF是⊙O的切線;

          2)當(dāng)BD,sinF時,求OF的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在近期抗疫期間,某藥店銷售A、B兩種型號的口罩,已知銷售800A型和450B型的利潤為210元,銷售400A型和600B型的利潤為180元.

          (1)求每只A型口罩和B型口罩的銷售利潤;

          (2)該藥店計劃一次購進兩種型號的口罩共2000只,其中B型口罩的進貨量不超過A型口罩的3倍,設(shè)購進A型口罩x只,這2000只口罩的銷售總利潤為y元.

          ①求y關(guān)于x的函數(shù)關(guān)系式;

          ②該藥店購進A型、B型口罩各多少只,才能使銷售總利潤最大?

          3)在銷售時,該藥店開始時將B型口罩提價100%,當(dāng)收回成本后,為了讓利給消費者,決定把B型口罩的售價調(diào)整為進價的15%,求B型口罩降價的幅度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】1)如圖1,在正方形ABCD中,EAB上一點,FAD延長線上一點,且DFBE.求證:CECF;

          2)如圖2,在正方形ABCD中,EAB上一點,GAD上一點,如果∠GCE45°,請你利用(1)的結(jié)論證明:GEBEGD

          3)運用(1)(2)解答中所積累的經(jīng)驗和知識,完成下題:

          如圖3,在直角梯形ABCD中,AD∥BCBCAD),∠B90°,ABBCEAB上一點,且∠DCE45°,BE4DE="10," 求直角梯形ABCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】李華為了測量樓房AB的高度,他從樓底的B處沿著斜坡向上行走20m,到達坡頂D處.已知斜坡的坡角為15(sin15°=0.259cos15°=0.966,tan15°=0.268,結(jié)果精確到0.1m

          1)求李華此時與地面的垂直距離CD的值;

          2)李華的身高ED1.6m,他站在坡頂看樓頂A處的仰角為45,求樓房AB的高度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:ABC在直角坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).

          (1)畫出ABC向下平移4個單位長度得到的A1B1C1,點C1的坐標(biāo)是  ;

          (2)以點B為位似中心,在網(wǎng)格內(nèi)畫出A2B2C2,使A2B2C2ABC位似,且位似比為2:1,點C2的坐標(biāo)是   

          (3)A2B2C2的面積是   平方單位.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】2019423日是第二十四個世界讀書日.某校組織讀書征文比賽活動,評選出一、二、三等獎若干名,并繪成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(不完整),請你根據(jù)圖中信息解答下列問題:

          1)求本次比賽獲獎的總?cè)藬?shù),并補全條形統(tǒng)計圖;

          2)求扇形統(tǒng)計圖中二等獎所對應(yīng)扇形的圓心角度數(shù);

          3)學(xué)校從甲、乙、丙、丁4位一等獎獲得者中隨機抽取2人參加世界讀書日宣傳活動,請用列表法或畫樹狀圖的方法,求出恰好抽到甲和乙的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:二次函數(shù)y=x2+bx+c經(jīng)過原點,且當(dāng)x=2時函數(shù)有最小值;直線AC解析式為y=kx-4,且與拋物線相交于B、C

          1)求二次函數(shù)解析式;

          2)若SAOBSBOC=13,求直線AC的解析式;

          3)在(2)的條件下,點E為線段BC上一動點(不與B、C重合),過Ex軸的垂線交拋物線于F、交x軸于G,是否存在點E,使△BEF和△CGE相似?若存在,請求出所有點E的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案