日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2003•黃石)先閱讀下面一段材料,再完成后面的問題:
          材料:過拋物線y=ax2(a>0)的對稱軸上一點(0,-)作對稱軸的垂線l,則拋物線上任意一點P到點F(0,)的距離與P到l的距離一定相等,我們將點F與直線l分別稱作這拋物線的焦點和準(zhǔn)線,如y=x2的焦點為(0,).
          問題:若直線y=kx+b交拋物線y=x2于A、B、AC、BD垂直于拋物線的準(zhǔn)線l,垂直足分別為C、D(如圖).
          ①求拋物線y=x2的焦點F的坐標(biāo);
          ②求證:直線AB過焦點時,CF⊥DF;
          ③當(dāng)直線AB過點(-1,0),且以線段AB為直徑的圓與準(zhǔn)線l相切時,求這條直線對應(yīng)的函數(shù)解析式.

          【答案】分析:①將a=代入題中給出的焦點坐標(biāo)公式中即可.
          ②根據(jù)焦點的概念可知:AC=AF,BF=BD,如果連接CF、DF,那么CF必平分角AFO(可用三角形全等證出).同理可求得DF平分∠BFO,由此可得證.
          ③可連接圓心與切點,設(shè)圓心為M,切點為N,那么MN就是梯形ACDB的中位線,因此MN=(AC+BD)=AB,根據(jù)焦點的定義知:AF=AC,BF=BD,因此AF+BF=AB,也就是說直線AB恰好過焦點F,那么可根據(jù)F的坐標(biāo)(①已求得)和已知的點(-1,0)的坐標(biāo)用待定系數(shù)法求出拋物線的解析式.
          解答:①解:F(0,1)

          ②證明:∵AC=AF,
          ∴∠ACF=∠AFC
          又∵AC∥OF,
          ∴∠ACF=∠CFO,
          ∴CF平分∠AFO,同理DF平分∠BFO;
          而∠AFO+∠BFO=180°
          ∴∠CFO+∠DFO=(∠AFO+∠BFO)=90°;
          ∴CF⊥DF.

          ③解:設(shè)圓心為M,且與l的切點為N,連接MN;
          ∴MN=AB
          在直角梯形ACDB中,M是AB的中點.
          ∴MN=(AC+BD),而AC=AF,BD=BF.
          ∴MN=(AF+BF)
          ∴AF+BF=AB
          ∴AB過焦點F(0,1).
          又AB過點(-1,0)

          解得
          ∴AB對應(yīng)的函數(shù)解析式為y=x+1.
          點評:本題為閱讀類題,解題的關(guān)鍵是弄清材料中各定義的含義,然后結(jié)合自己掌握的知識進(jìn)行求解.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2003年湖北省黃石市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2003•黃石)先閱讀下面一段材料,再完成后面的問題:
          材料:過拋物線y=ax2(a>0)的對稱軸上一點(0,-)作對稱軸的垂線l,則拋物線上任意一點P到點F(0,)的距離與P到l的距離一定相等,我們將點F與直線l分別稱作這拋物線的焦點和準(zhǔn)線,如y=x2的焦點為(0,).
          問題:若直線y=kx+b交拋物線y=x2于A、B、AC、BD垂直于拋物線的準(zhǔn)線l,垂直足分別為C、D(如圖).
          ①求拋物線y=x2的焦點F的坐標(biāo);
          ②求證:直線AB過焦點時,CF⊥DF;
          ③當(dāng)直線AB過點(-1,0),且以線段AB為直徑的圓與準(zhǔn)線l相切時,求這條直線對應(yīng)的函數(shù)解析式.

          查看答案和解析>>

          同步練習(xí)冊答案