日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•威海)如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點(diǎn)E.K為
          AC
          上一動(dòng)點(diǎn),AK,DC的延長(zhǎng)線相交于點(diǎn)F,連接CK,KD.
          (1)求證:∠AKD=∠CKF;
          (2)若AB=10,CD=6,求tan∠CKF的值.
          分析:(1)連接AD、AC.根據(jù)“圓內(nèi)接四邊形對(duì)角互補(bǔ)”以及同角得到補(bǔ)角相等,推知∠CKF=∠ADC;然后由圓心角、弧、弦間的關(guān)系以及圓周角定理證得∠ADC=∠AKD;最后根據(jù)圖中角與角間的和差關(guān)系證得結(jié)論;
          (2)連接OD.利用垂徑定理知DE=CE=
          1
          2
          CD=3;然后在Rt△ODE中根據(jù)勾股定理求得OE=4;最后在Rt△ADE中利用三角函數(shù)的定義求得tan∠ADE=3,由等量代換知tan∠CKF=3.
          解答:(1)證明:連接AD、AC.
          ∵∠CKF是圓內(nèi)接四邊形ADCK的外角,
          ∴∠CKF+∠AKC=180°,
          ∠AKC+∠ADC=180°
          ∴∠CKF=∠ADC;
          ∵AB為⊙O的直徑,弦CD⊥AB,
          BD
          =
          BC

          AD
          =
          AC

          ∴∠ADC=∠AKD,
          ∴∠AKD=∠CKF;

          (2)解:連接OD.
          ∵AB為⊙O的直徑,AB=10,
          ∴OD=5;
          ∵弦CD⊥AB,CD=6,
          ∴DE=CE=
          1
          2
          CD=3(垂徑定理);
          在Rt△ODE中,OE=
          OD2-DE2
          =4,
          ∴AE=9;
          在Rt△ADE中,tan∠ADE=
          AE
          DE
          =
          9
          3
          =3;
          ∵∠CKF=∠ADE,
          ∴tan∠CKF=3.
          點(diǎn)評(píng):此題考查了圓的綜合題.解答此題時(shí),綜合利用了圓內(nèi)接四邊形的性質(zhì)、垂徑定理、勾股定理以及解直角三角形等知識(shí).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•威海)如圖,a∥b,點(diǎn)A在直線a上,點(diǎn)C在直線b上,∠BAC=90°,AB=AC,若∠1=20°,則∠2的度數(shù)為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•威海)如圖,在?ABCD中,AE,CF分別是∠BAD和∠BCD的平分線,添加一個(gè)條件,仍無法判斷四邊形AECF為菱形的是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•威海)如圖,在平面直角坐標(biāo)系中,線段OA1=1,OA1與x軸的夾角為30°,線段A1A2=1,A2A1⊥OA1,垂足為A1;線段A2A3=1,A3A2⊥A1A2,垂足為A2;線段A3A4=1,A4A3⊥A2A3,垂足為A3;…按此規(guī)律,點(diǎn)A2012的坐標(biāo)為
          (503
          3
          -503,503
          3
          +503)
          (503
          3
          -503,503
          3
          +503)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•威海)如圖,直線l1,l2交于點(diǎn)A,觀察圖象,點(diǎn)A的坐標(biāo)可以看作方程組
          y=-x+2
          y=2x-1
          y=-x+2
          y=2x-1
          的解.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案