日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】操作:在中,,將一塊等腰直角三角板的直角頂點放在斜邊的中點處,將三角板繞點旋轉(zhuǎn),三角板的兩直角邊分別交射線、兩點.圖,,是旋轉(zhuǎn)三角板得到的圖形中的種情況.

          研究:

          三角板繞點旋轉(zhuǎn),觀察線段之間有什么數(shù)量關(guān)系,并結(jié)合圖加以證明;

          三角板繞點旋轉(zhuǎn),是否能成為等腰三角形?若能,指出所有情況(即寫出為等腰三角形時的長);若不能,請說明理由;

          若將三角板的直角頂點放在斜邊上的處,且,和前面一樣操作,試問線段之間有什么數(shù)量關(guān)系?并結(jié)合圖加以證明.

          【答案】證明見解析;(2)共有四種情況:當(dāng)點與點重合,即時,;②,此時;

          當(dāng)時,此時;④當(dāng)的延長線上,且時,此時;

          【解析】

          試題(1)連接PC,通過證明△PCD≌△PBE,得出PD=PE

          2)分為點C與點E重合、CE=、CE=1ECB的延長線上四種情況進(jìn)行說明;

          3)作MH⊥CB,MF⊥AC,構(gòu)造相似三角形△MDF△MHE,然后利用對應(yīng)邊成比例,就可以求出MDME之間的數(shù)量關(guān)系.

          1)連接PC,

          因為△ABC是等腰直角三角形,PAB的中點,

          ∴CP=PB,CP⊥AB∠ACP=∠ACB=45°

          ∴∠ACP=∠B=45°

          ∵∠DPC+∠CPE=∠BPE+∠CPE,

          ∴∠DPC=∠BPE

          ∴△PCD≌△PBE

          ∴PD=PE

          2△PBE是等腰三角形,

          當(dāng)PE=PB時,此時點C與點E重合,CE=0

          當(dāng)BP=BE時,E在線段BC上,CE=;ECB的延長線上,CE=

          當(dāng)EP=EB時,CE=1

          3)過點MMF⊥AC,MH⊥BC

          ∵∠C=90°,

          四邊形CFMH是矩形即∠FMH=90°,MF=CH

          ∵∠DMF+∠DMH=∠DMH+∠EMH=90°,

          ∴∠DMF=∠EMH,

          ∵∠MFD=∠MHE=90°,

          ∴△MFD∽△MHE

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在一張長12cm、寬5cm的矩形紙片內(nèi),要折出一個菱形小華同學(xué)按照取兩組對邊中點的方法折出菱形EFGH見方案一),小麗同學(xué)沿矩形的對角線AC折出CAE=CAD,ACF=ACB的方法得到菱形AECF見方案二).

          1你能說出小華、小麗所折出的菱形的理由嗎?

          2請你通過計算比較小華和小麗同學(xué)的折法中,哪種菱形面積較大?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】1)一般地,數(shù)軸上表示數(shù)m和數(shù)n的兩點之間的距離等于.如果表示數(shù)a的兩點之間的距離是5,那么__________;

          2)若數(shù)軸上表示數(shù)a的點位于6之間,求的值;

          3)當(dāng)a取何值時,的值最小,最小值是多少?請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點,A(m,n+1),B(m+2,n).

          1)當(dāng)m=1,n=2.如圖1,連接AB、AOBO.直接寫出△ABO的面積為 .

          2)如圖2,若點A在第二象限、點B在第一象限,連接AB、AO、BO,ABy軸于H,△ABO的面積為2.求點H的坐標(biāo).

          3)若點AB在第一象限,在y 軸正半軸上存在點C,使得∠CAB=900,CA=AB,m的值,及OC的長(用含n的式子表示).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在等腰中,,點為邊上一點(不與點、點重合),,垂足為,交于點.

          1)請猜想之間的數(shù)量關(guān)系,并證明;

          2)若點為邊延長線上一點,,垂足為,交延長線于點,請在圖2中畫出圖形,并判斷(1)中的結(jié)論是否成立.若成立,請證明;若不成立,請寫出你的猜想并證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】“丹棱凍粑”是眉山著名特色小吃,產(chǎn)品暢銷省內(nèi)外,現(xiàn)有一個產(chǎn)品銷售點在經(jīng)銷時發(fā)現(xiàn):如果每箱產(chǎn)品盈利10元,每天可售出50箱;若每箱產(chǎn)品漲價1元,日銷售量將減少2箱.

          (1)現(xiàn)該銷售點每天盈利600元,同時又要顧客得到實惠,那么每箱產(chǎn)品應(yīng)漲價多少元?

          (2)若該銷售點單純從經(jīng)濟角度考慮,每箱產(chǎn)品應(yīng)漲價多少元才能獲利最高?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四邊形ABCD中,ADBCEAB的中點,連接DE并延長交CB的延長線于點F,點MBC邊上,且∠MDF=∠ADF

          1)求證:△ADE≌△BFE;

          2)如果FM=CM,求證:EM垂直平分DF

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,是矩形的對角線的交點,、、分別是、、上的點,且

          求證:四邊形是矩形;

          、、分別是、、的中點,且,求矩形的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校八年級同學(xué)到距學(xué)校6千米的郊外秋游,一部分同學(xué)步行,另一部分同學(xué)騎自行車,沿相同路線前往,如圖分別表示步行和騎車的同學(xué)前往目的地所走的路程y(千米)與所用時間(分鐘)之間的函數(shù)關(guān)系,則以下判斷錯誤的是

          A.騎車的同學(xué)比步行的同學(xué)晚出發(fā)30分鐘

          B.騎車的同學(xué)比步行的同學(xué)早6分鐘到達(dá)目的地

          C.騎車的同學(xué)從出發(fā)到追上步行的同學(xué)用了20分鐘

          D.步行同學(xué)的速度是6千米/小時,騎車同學(xué)的速度是千米/小時.

          查看答案和解析>>

          同步練習(xí)冊答案