日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,△ABC是等邊三角形,D是BC邊的中點(diǎn),點(diǎn)E在AC的延長(zhǎng)線上,且∠CDE=30°.若AD=
          3
          ,求DE的長(zhǎng).
          分析:由三角形ABC為等邊三角形,利用等邊三角形的性質(zhì)得到AB=AC,且∠ACB=∠BAC=60°,再由D為BC的中點(diǎn),利用三線合一得到AD為角平分線,可得出∠DAC為30°,由∠ACB為△DCE的外角,利用外角的性質(zhì)得到∠ACB=∠E+∠CDE=60°,再由∠CDE=30°,得到∠DAE=∠E,利用等角對(duì)等邊得到DE=AD,由AD的長(zhǎng)即可求出DE的長(zhǎng).
          解答:解:∵△ABC為等邊三角形,
          ∴AB=AC,∠ACB=∠BAC=60°,
          ∵D是BC的中點(diǎn),
          ∴AD平分∠BAC,
          ∴∠DAC=
          1
          2
          ∠BAC=30°,
          ∵∠ACB為△DCE的外角,
          ∴∠ACB=∠E+∠CDE=60°,又∠CDE=30°,
          ∴∠E=∠DAE=30°,又AD=
          3
          ,
          ∴DE=AD=
          3
          點(diǎn)評(píng):此題考查了等邊三角形的性質(zhì),三角形的外角性質(zhì),以及等腰三角形的判定與性質(zhì),熟練掌握判定與性質(zhì)是解本題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,△ABC是等邊三角形,⊙O過(guò)點(diǎn)B,C,且與BA,CA的延長(zhǎng)線分別交于點(diǎn)D,E,弦DF精英家教網(wǎng)∥AC,EF的延長(zhǎng)線交BC的延長(zhǎng)線于點(diǎn)G.
          (1)求證:△BEF是等邊三角形;
          (2)若BA=4,CG=2,求BF的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          9、如圖,△ABC是等邊三角形,過(guò)AB邊上一點(diǎn)D作BC的平行線交AC于E,則△ADE的三個(gè)內(nèi)角
          等于60度.(填“都”、“不都”或“都不”)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,△ABC是等邊三角形,AB=4cm,則BC邊上的高AD等于
           
          cm.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,△ABC是等邊三角形,D為BC邊上的點(diǎn),∠BAD=15°,將△ABD繞點(diǎn)A點(diǎn)逆時(shí)針方向旋轉(zhuǎn)后到達(dá)△ACE的位置,那么旋轉(zhuǎn)角的度數(shù)是
          60°
          60°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,△ABC是等邊三角形,CE是外角平分線,點(diǎn)D在AC上,連結(jié)BD并延長(zhǎng)與CE交于點(diǎn)E.
          (1)直接寫出∠ECF的度數(shù)等于
          60
          60
          °;
          (2)求證:△ABD∽△CED;
          (3)若AB=12,AD=2CD,求BE的長(zhǎng).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案