日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 17、如圖,AB是半圓O的直徑,點(diǎn)M是半徑OA的中點(diǎn),點(diǎn)P在線段AM上運(yùn)動(dòng)(不與點(diǎn)M重合),點(diǎn)Q在半圓O上運(yùn)動(dòng),且總保持PQ=PO,過點(diǎn)Q作⊙O的切線交BA的延長(zhǎng)線于點(diǎn)C.
          (1)當(dāng)∠QPA=60°時(shí),請(qǐng)你對(duì)△QCP的形狀做出猜想,并給予證明;
          (2)當(dāng)QP⊥AB時(shí),△QCP的形狀是
          等腰直角
          三角形;
          (3)由(1)、(2)得出的結(jié)論,請(qǐng)進(jìn)一步猜想當(dāng)點(diǎn)P在線段AM上運(yùn)動(dòng)到任何位置時(shí),△QCP一定是
          等腰
          三角形.
          分析:(1)可根據(jù)切線的性質(zhì)來求解,連接OQ,那么OQ⊥CQ,可根據(jù)∠CPQ的度數(shù)得出∠PQO=∠POQ,那么∠CQP和∠C都是30°角的余角,因此它們的度數(shù)都是60°,由此可得出三角形CPQ是個(gè)等邊三角形.
          (2)方法同(1),連接OQ后,∠PQO=∠POQ=45°,那么∠CQP和∠C都是45°角的余角,因此它們的度數(shù)都是45°,由此可得出三角形QCP是等腰直角三角形.
          (3)不管P在AM上的任何位置,證法都同(1),由于PQ=PO,那么∠PQO=∠POQ,那么根據(jù)等角的余角相等,那么∠CQP=∠PCQ,因此三角形CPQ是等腰三角形.
          解答:解:(1)△QCP是等邊三角形,
          證明:連接OQ,則CQ⊥OQ,
          ∵PQ=PO,∠QPC=60°,
          ∴∠POQ=∠PQO=30°,
          ∴∠C=90°-30°=60°,
          ∴∠CQP=∠C=∠QPC=60°,
          ∴△QPC是等邊三角形.

          (2)連接OQ,
          ∵∠PQO=∠POQ=45°,
          ∴∠CQP和∠C都是45°角的余角,
          ∴∠CQP=∠C=45°,△QCP是等腰直角三角形.

          (3)∵PQ=PO,
          ∴∠PQO=∠POQ,
          ∴∠CQP=∠PCQ,
          ∴△CPQ是等腰三角形.
          點(diǎn)評(píng):本題主要考查了切線的性質(zhì),等腰三角形,等邊三角形的判定等知識(shí)點(diǎn),根據(jù)切線的性質(zhì)來求解是本題的基本思路.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,AB是半圓O的直徑,AC是弦,點(diǎn)P從點(diǎn)B開始沿BA邊向點(diǎn)A以1cm/s的速度移動(dòng),若AB長(zhǎng)為10cm,點(diǎn)O到AC的距離為4cm.
          (1)求弦AC的長(zhǎng);
          (2)問經(jīng)過幾秒后,△APC是等腰三角形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知:如圖,AB是半圓O的直徑,OD是半徑,BM切半圓于點(diǎn)B,OC與弦AD平行交BM于點(diǎn)C.
          (1)求證:CD是半圓O的切線;
          (2)若AB的長(zhǎng)為4,點(diǎn)D在半圓O上運(yùn)動(dòng),當(dāng)AD的長(zhǎng)為1時(shí),求點(diǎn)A到直線CD的距離.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,AB是半圓O的直徑,點(diǎn)D是半圓上一動(dòng)點(diǎn),AB=10,AC=8,當(dāng)△ACD是等腰三角形時(shí),點(diǎn)D到AB的距離是
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,AB是半圓O的直徑,以O(shè)A為直徑的半圓O′與弦AC交于點(diǎn)D,O′E∥AC,并交OC于點(diǎn)E,則下列結(jié)論:①S△O′OE=
          1
          2
          S△AOC2;②點(diǎn)D時(shí)AC的中點(diǎn);③
          AC
          =2AD;④四邊形O′DEO是菱形.其中正確的結(jié)論是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,AB是半圓O的直徑,過點(diǎn)O作弦AD的垂線交半圓O于點(diǎn)E,F(xiàn)為垂足,交AC于點(diǎn)C使∠BED=∠C.請(qǐng)判斷直線AC與圓O的位置關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案