日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,請(qǐng)?jiān)谙铝兴膫(gè)等式中,選出兩個(gè)作為條件,推出△AED是等腰三角形,并予以證明.(寫出一種即可)
          等式:①AB=DC,②BE=CE,③∠B=∠C,④∠BAE=∠CDE.精英家教網(wǎng)
          已知:
          求證:△AED是等腰三角形.
          證明:
          分析:根據(jù)等腰三角形的判定方法,即在一三角形中等邊對(duì)等角或等角對(duì)等邊,可選①③來證明△ABE≌△DCE,從而得到AE=DE,即△AED是等腰三角形.
          (或①④,或②③,或②④.)
          解答:解:已知:①③(或①④,或②③,或②④)
          證明:在△ABE和△DCE中
          ∠B=∠C
          ∠AEB=∠DEC
          AB=DC

          ∴△ABE≌△DCE;
          ∴AE=DE;
          △AED是等腰三角形.
          點(diǎn)評(píng):此題考查學(xué)生對(duì)等腰三角形的判定方法及全等三角形的判定的掌握情況;發(fā)現(xiàn)并利用全等三角形是正確解答本題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          閱讀:如圖1,在△ABC和△DEF中,∠ABC=∠DEF=90°,AB=DE=a,BC=EF=b(a<b),B、C、D、E四點(diǎn)都在直線m上,點(diǎn)B與點(diǎn)D重合.
          連接AE、FC,我們可以借助于S△ACE和S△FCE的大小關(guān)系證明不等式:a2+b2>2ab(b>a>0).
          證明過程如下:
          ∵BC=b,BE=a,EC=b-a.
          S△ACE=
          1
          2
          EC•AB=
          1
          2
          (b-a)a
          S△FCE=
          1
          2
          EC•FE=
          1
          2
          (b-a)b

          ∵b>a>0
          ∴S△FCE>S△ACE
          1
          2
          (b-a)b>
          1
          2
          (b-a)a

          ∴b2-ab>ab-a2
          ∴a2+b2>2ab
          解決下列問題:
          (1)現(xiàn)將△DEF沿直線m向右平移,設(shè)BD=k(b-a),且0≤k≤1.如圖2,當(dāng)BD=EC時(shí),k=
           
          .利用此圖,仿照上述方法,證明不等式:a2+b2>2ab(b>a>0).
          (2)用四個(gè)與△ABC全等的直角三角形紙板進(jìn)行拼接,也能夠借助圖形證明上述不等式.請(qǐng)你畫出一個(gè)示意圖,并簡要說明理由.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          16、如圖,把邊長為2cm的正方形剪成四個(gè)全等的直角三角形,請(qǐng)用這四個(gè)直角三角形拼成符合下列要求的圖形.(全部用上,互不重合且不留空隙),并把你的拼法依照?qǐng)D示按實(shí)際大小畫在方格內(nèi)(方格為1cm×1cm)
          (1)不是正方形的菱形;(一個(gè))
          (2)不是正方形的矩形;(一個(gè))
          (3)梯形;(一個(gè))
          (4)不是矩形和菱形的平行四邊形;(一個(gè))
          (5)不是梯形和平行四邊形的凸四邊形;(一個(gè))
          (6)與以上畫出的圖形不全等的其他凸四邊形;(畫出的圖形互不全等,能畫出幾個(gè)畫幾個(gè),至少畫三個(gè))
          (7)畫凸多邊形.(與上面畫的圖形不一樣)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          24、如圖,把長為2cm的正方形剪成四個(gè)全等的直角三角形,請(qǐng)用這四個(gè)直角三角形(全部用上)拼成下列符合要求的圖形(互不重疊且沒有空隙),并把你的拼法畫在下列的方格紙內(nèi)(方格為1cm×1cm)
          (1)畫一個(gè)不是正方形的菱形; 
          (2)畫一個(gè)不是正方形的矩形
          (3)畫一個(gè)不是矩形也不是菱形的平行四邊形
           (4)畫一個(gè)梯形

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在?ABCD中,分別以AB、AD為邊向外作等邊△ABE、△ADF,延長CB交AE于點(diǎn)G,點(diǎn)G在點(diǎn)A,
          E之間,連接CE、CF、EF,有下列四個(gè)結(jié)論:
          ①△CDF≌△EBC;     ②∠CDF=∠EAF;
          ③△ECF是等邊三角形;  ④CG⊥AE,
          請(qǐng)把你認(rèn)為正確的結(jié)論的序號(hào)填在橫線上
          ①②③
          ①②③

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          我們發(fā)現(xiàn),用不同的方式表示同一圖形的面積可以解決線段長度之間關(guān)系的有關(guān)問題,這種方法稱為等面積法,這是一種重要的數(shù)學(xué)方法.請(qǐng)你用等面積法來探究下列兩個(gè)問題:
          (1)如圖1是著名的趙爽弦圖,由四個(gè)全等的直角三角形拼成,請(qǐng)你用它來驗(yàn)證勾股定理;
          (2)如圖2,在Rt△ABC中,∠ACB=90°,CD是AB邊上的高,AC=4,BC=3,求CD的長度.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案