日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 課題:兩個重疊的正多形,其中的一個繞某一頂點(diǎn)旋轉(zhuǎn)所形成的有關(guān)問題.
          實驗與論證:
          設(shè)旋轉(zhuǎn)角∠A1A0B1=α(α<∠A1A0A2),θ3、θ4、θ5、θ6所表示的角如圖所示.
          精英家教網(wǎng)
          (1)用含α的式子表示解的度數(shù):θ3=
           
          ,θ4=
           
          ,θ5=
           
          ;
          (2)圖1-圖4中,連接A0H時,在不添加其他輔助線的情況下,是否存在與直線A0H垂直且被它平分的線段?若存在,請選擇其中的一個圖給出證明;若不存在,請說明理由;
          歸納與猜想:
          設(shè)正n邊形A0A1A2…An-1與正n邊形A0B1B2…Bn-1重合(其中,A1與B1重合),現(xiàn)將正邊形A0B1B2…Bn-1繞頂點(diǎn)A0逆時針旋轉(zhuǎn)α(0°<α<
          180n
          °);
          (3)設(shè)θn與上述“θ3、θ4、…”的意義一樣,請直接寫出θn的度數(shù);
          (4)試猜想在正n邊形的情形下,是否存在與直線A0H垂直且被它平分的線段?若存在,請將這條線段用相應(yīng)的頂點(diǎn)字母表示出來(不要求證明);若不存在,請說明理由.
          分析:(1)由正三角形的性質(zhì)得α+θ3=60°,再由正方形的性質(zhì)得θ4=45°-(45°-α)=α,最后由正五邊形的性質(zhì)得θ5=108°-36°-36°-α=36°-α;
          (2)存在,如在圖1中直線A0H垂直且平分的線段A2B1,△A0A1A2≌△A0B1B2,推得A2H=B1H,則點(diǎn)H在線段A2B1的垂直平分線上;由A0A2=A0B1,則點(diǎn)A0在線段A2B1的垂直平分線上,從而得出直線A0H垂直且平分的線段A2B1
          (3)當(dāng)n為奇數(shù)時,θn=
          180°
          n
          -α;
          當(dāng)n為偶數(shù)時,θn
          (4)多寫幾個總結(jié)規(guī)律:
          當(dāng)n為奇數(shù)時,直線A0H垂直平分A
          n+1
          2
          B
          n-1
          2

          當(dāng)n為偶數(shù)時,直線A0H垂直平分A
          n
          2
          B
          n
          2
          解答:解:(1)60°-α,α,36°-α

          (2)存在.下面就所選圖形的不同分別給出證明:精英家教網(wǎng)
          選圖如,圖中有直線A0H垂直平分A2B1,證明如下:
          方法一:
          證明:∵△A0A1A2與△A0B1B2是全等的等邊三角形
          ∴A0A2=A0B1
          ∴∠A0A2B1=∠A0B1A2
          又∠A0A2H=∠A0B1H=60°
          ∴∠HA2B1=∠HB1A2
          ∴A2H=B1H,∴點(diǎn)H在線段A2B1的垂直平分線上
          又∵A0A2=A0B1,∴點(diǎn)A0在線段A2B1的垂直平分線上
          ∴直線A0H垂直平分A2B1
          方法二:
          證明:∵△A0A1A2與△A0B1B2是全等的等邊三角形
          ∴A0A2=A0B2
          ∴∠A0A2B1=∠A0B1A2精英家教網(wǎng)
          又∠A0A2H=∠A0B1H=60°
          ∴∠HA2B1=∠HB1A2
          ∴A2H=B1H,
          在△A0A2H與△A0B1H中
          ∵A0A2=A0B1,
          HA2=HB1,∠A0A2H=∠A0B1H
          ∴△A0A2H≌△A0B1H
          ∴∠A0A2H=∠B1A2H
          ∴A0H是等腰三角形A0A2B1的角平分線,
          ∴直線A0H垂直平分A2B1選圖如,圖中有直線A0H垂直平分A2B2,證明如下:
          ∵A0B2=A0A2∴∠A0B2A2=∠A0A2B2
          又∵∠A0B2B1=∠A0A2A3
          ∴∠HB2A2=∠HA2B2
          ∴HB2=HA2
          ∴點(diǎn)H在線段A2B2的垂直平分線上
          又∵A0B2=A0A2,∴點(diǎn)A0在線段A2B2的垂直平分線上
          ∴直線A0H垂直平分A2B2

          (3)當(dāng)n為奇數(shù)時,θn=
          180°
          n
          -α;
          當(dāng)n為偶數(shù)時,θn=α.

          (4)存在.
          當(dāng)n為奇數(shù)時,直線A0H垂直平分A
          n+1
          2
          B
          n-1
          2
          ,
          當(dāng)n為偶數(shù)時,直線A0H垂直平分A
          n
          2
          B
          n
          2
          點(diǎn)評:此題主要考查線段的垂直平分線的性質(zhì)等幾何知識.線段的垂直平分線上的點(diǎn)到線段的兩個端點(diǎn)的距離相等.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2010年江西省贛州市定南三中初三畢業(yè)班教師專業(yè)考試數(shù)學(xué)試卷(解析版) 題型:解答題

          課題:兩個重疊的正多形,其中的一個繞某一頂點(diǎn)旋轉(zhuǎn)所形成的有關(guān)問題.
          實驗與論證:
          設(shè)旋轉(zhuǎn)角∠A1AB1=α(α<∠A1AA2),θ3、θ4、θ5、θ6所表示的角如圖所示.

          (1)用含α的式子表示解的度數(shù):θ3=______,θ4=______,θ5=______;
          (2)圖1-圖4中,連接AH時,在不添加其他輔助線的情況下,是否存在與直線AH垂直且被它平分的線段?若存在,請選擇其中的一個圖給出證明;若不存在,請說明理由;
          歸納與猜想:
          設(shè)正n邊形AA1A2…An-1與正n邊形AB1B2…Bn-1重合(其中,A1與B1重合),現(xiàn)將正邊形AB1B2…Bn-1繞頂點(diǎn)A逆時針旋轉(zhuǎn)α(0°<α<°);
          (3)設(shè)θn與上述“θ3、θ4、…”的意義一樣,請直接寫出θn的度數(shù);
          (4)試猜想在正n邊形的情形下,是否存在與直線AH垂直且被它平分的線段?若存在,請將這條線段用相應(yīng)的頂點(diǎn)字母表示出來(不要求證明);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《四邊形》(08)(解析版) 題型:解答題

          (2010•江西)課題:兩個重疊的正多形,其中的一個繞某一頂點(diǎn)旋轉(zhuǎn)所形成的有關(guān)問題.
          實驗與論證:
          設(shè)旋轉(zhuǎn)角∠A1AB1=α(α<∠A1AA2),θ3、θ4、θ5、θ6所表示的角如圖所示.

          (1)用含α的式子表示解的度數(shù):θ3=______,θ4=______,θ5=______;
          (2)圖1-圖4中,連接AH時,在不添加其他輔助線的情況下,是否存在與直線AH垂直且被它平分的線段?若存在,請選擇其中的一個圖給出證明;若不存在,請說明理由;
          歸納與猜想:
          設(shè)正n邊形AA1A2…An-1與正n邊形AB1B2…Bn-1重合(其中,A1與B1重合),現(xiàn)將正邊形AB1B2…Bn-1繞頂點(diǎn)A逆時針旋轉(zhuǎn)α(0°<α<°);
          (3)設(shè)θn與上述“θ3、θ4、…”的意義一樣,請直接寫出θn的度數(shù);
          (4)試猜想在正n邊形的情形下,是否存在與直線AH垂直且被它平分的線段?若存在,請將這條線段用相應(yīng)的頂點(diǎn)字母表示出來(不要求證明);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《三角形》(12)(解析版) 題型:解答題

          (2010•江西)課題:兩個重疊的正多形,其中的一個繞某一頂點(diǎn)旋轉(zhuǎn)所形成的有關(guān)問題.
          實驗與論證:
          設(shè)旋轉(zhuǎn)角∠A1AB1=α(α<∠A1AA2),θ3、θ4、θ5、θ6所表示的角如圖所示.

          (1)用含α的式子表示解的度數(shù):θ3=______,θ4=______,θ5=______;
          (2)圖1-圖4中,連接AH時,在不添加其他輔助線的情況下,是否存在與直線AH垂直且被它平分的線段?若存在,請選擇其中的一個圖給出證明;若不存在,請說明理由;
          歸納與猜想:
          設(shè)正n邊形AA1A2…An-1與正n邊形AB1B2…Bn-1重合(其中,A1與B1重合),現(xiàn)將正邊形AB1B2…Bn-1繞頂點(diǎn)A逆時針旋轉(zhuǎn)α(0°<α<°);
          (3)設(shè)θn與上述“θ3、θ4、…”的意義一樣,請直接寫出θn的度數(shù);
          (4)試猜想在正n邊形的情形下,是否存在與直線AH垂直且被它平分的線段?若存在,請將這條線段用相應(yīng)的頂點(diǎn)字母表示出來(不要求證明);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年江西省中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2010•江西)課題:兩個重疊的正多形,其中的一個繞某一頂點(diǎn)旋轉(zhuǎn)所形成的有關(guān)問題.
          實驗與論證:
          設(shè)旋轉(zhuǎn)角∠A1AB1=α(α<∠A1AA2),θ3、θ4、θ5、θ6所表示的角如圖所示.

          (1)用含α的式子表示解的度數(shù):θ3=______,θ4=______,θ5=______;
          (2)圖1-圖4中,連接AH時,在不添加其他輔助線的情況下,是否存在與直線AH垂直且被它平分的線段?若存在,請選擇其中的一個圖給出證明;若不存在,請說明理由;
          歸納與猜想:
          設(shè)正n邊形AA1A2…An-1與正n邊形AB1B2…Bn-1重合(其中,A1與B1重合),現(xiàn)將正邊形AB1B2…Bn-1繞頂點(diǎn)A逆時針旋轉(zhuǎn)α(0°<α<°);
          (3)設(shè)θn與上述“θ3、θ4、…”的意義一樣,請直接寫出θn的度數(shù);
          (4)試猜想在正n邊形的情形下,是否存在與直線AH垂直且被它平分的線段?若存在,請將這條線段用相應(yīng)的頂點(diǎn)字母表示出來(不要求證明);若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案