日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,AB是⊙O的直徑,點(diǎn)PAB下方的半圓上不與點(diǎn)A,B重合的一個(gè)動(dòng)點(diǎn),點(diǎn)CAP的中點(diǎn),連接CO并延長(zhǎng),交⊙O于點(diǎn)D,連接AD,過(guò)點(diǎn)D作⊙O的切線,交PB的延長(zhǎng)線于點(diǎn)E,連接CE

          1)求證:DACECP;

          2)填空:

          ①當(dāng)∠DAP=______°時(shí),四邊形DEPC為正方形;

          ②在點(diǎn) P的運(yùn)動(dòng)過(guò)程中,若⊙O的直徑為10,tanDCE=,則AD=______

          【答案】1)見(jiàn)解析;(2)①45,②

          【解析】

          1)先由切線的性質(zhì)得到∠CDE90°,再利用垂徑定理的推理得到DCAP,接著根據(jù)圓周角定理得到∠APB90°,于是可判斷四邊形DEPC為矩形,所以DCEP,然后根據(jù)“SAS”判斷△DAC≌△ECP;

          2)①利用四邊形DEPC為矩形得到DEPCAC,則根據(jù)正方形的判定方法得DCCP時(shí),四邊形DEPC為正方形,則DCCPAC,于是得到此時(shí)△ACD為等腰直角三角形,所以∠DAP45°;

          ②先證明∠ADC=∠DCE,再在RtACD中利用正切得到tanADC,則設(shè)ACx,DC2x,利用勾股定理得到ADx,然后在RtAOC中利用勾股定理得到x2+(2x5252,再解方程求出x即可得到AD的長(zhǎng).

          1)證明:的直徑,

          .

          點(diǎn)的中點(diǎn),點(diǎn)的中點(diǎn),

          的中位線,,

          ,

          ,即.

          是圓的切線,

          ,

          四邊形為矩形,

          .

          ,,

          .

          2)解:①∵四邊形DEPC為矩形,

          DEPCAC,

          ∵當(dāng)DCCP時(shí),四邊形DEPC為正方形,

          此時(shí)DCCPAC,

          ∴△ACD為等腰直角三角形,

          ∴∠DAP45°;

          ②∵DEAC,DEAC

          ∴四邊形ACED為平行四邊形,

          ADCE

          ∴∠ADC=∠DCE,

          RtACD中,tanADCtanDCE,

          設(shè)ACx,則DC2x,

          AD

          RtAOC中,AO5,OCCDOD2x5,

          x2+(2x5252,解得x10(舍去),x24,

          AD

          故答案為①45;②

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖1,一張矩形紙片ABCD,其中AD=8cm,AB=6cm,先沿對(duì)角線BD折疊,點(diǎn)C落在點(diǎn)C′的位置,BC′AD于點(diǎn)G

             

          1)求證:BG=DG;

          2)求C′G的長(zhǎng);

          3)如圖2,再折疊一次,使點(diǎn)DA重合,折痕ENADM,求EM的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,AD是⊙O的直徑,以A為圓心,弦AB為半徑畫(huà)弧交⊙O于點(diǎn)C,連結(jié)BCAD于點(diǎn)E,若DE3,BC8,則⊙O的半徑長(zhǎng)為(

          A.B.5C.D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】小明對(duì)自己所在班級(jí)的50名學(xué)生平均每周參加課外活動(dòng)的時(shí)間進(jìn)行了調(diào)查,由調(diào)查結(jié)果繪制了頻數(shù)分布直方圖,根據(jù)圖中信息回答下列問(wèn)題:

          1)求m的值;

          2)從參加課外活動(dòng)時(shí)間在610小時(shí)的5名學(xué)生中隨機(jī)選取2人,請(qǐng)你用列表或畫(huà)樹(shù)狀圖的方法,求其中至少有1人課外活動(dòng)時(shí)間在810小時(shí)的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知E、FG、H是四邊形ABCD四邊的中點(diǎn),則四邊形EFGH的形狀為_____;如四邊形ABCD的對(duì)角線AC BD的和為40,則四邊形EFGH的周長(zhǎng)為________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖①、圖②,在給定的一張矩形紙片上作一個(gè)正方形,甲、乙兩人的作法如下:

          甲:以點(diǎn)A為圓心,AD長(zhǎng)為半徑畫(huà)弧,交AB于點(diǎn)E,以點(diǎn)D為圓心,AD長(zhǎng)為半徑畫(huà)弧,交CD于點(diǎn)F,連接EF,則四邊形AEFD即為所求;

          乙:作∠DAB的平分線,交CD于點(diǎn)M,同理作∠ADC的平分線,交AB于點(diǎn)N,連接MN,則四邊形ADMN即為所求.

          對(duì)于以上兩種作法,可以做出的判定是(  )

          A.甲正確,乙錯(cuò)誤B.甲、乙均正確

          C.乙正確,甲錯(cuò)誤D.甲、乙均錯(cuò)誤

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,直線l1l2,Ol1l2分別相切于點(diǎn)A和點(diǎn)B.點(diǎn)M和點(diǎn)N分別是l1l2上的動(dòng)點(diǎn),MN沿l1l2平移.⊙O的半徑為1,1=60°.有下列結(jié)論:①MN=;②若MN與⊙O相切,則AM=;③若∠MON=90°,則MN與⊙O相切;④l1l2的距離為2,其中正確的有( 。

          A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四邊形ABCD中,ADBC,BABCBD平分∠ABC

          1)求證:四邊形ABCD是菱形;

          2)過(guò)點(diǎn)DDEBD,交BC的延長(zhǎng)線于點(diǎn)E,若BC5BD8,求四邊形ABED的周長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】把兩個(gè)全等的矩形ABCDEFGH如圖1擺放(點(diǎn)D和點(diǎn)G重合,點(diǎn)C和點(diǎn)H重合),點(diǎn)A、DG)在同一條直線上,AB6cmBC8cm.如圖2,ABC從圖1位置出發(fā),沿BC方向勻速運(yùn)動(dòng),速度為1cm/sACGH交于點(diǎn)P;同時(shí),點(diǎn)Q從點(diǎn)E出發(fā),沿EF方向勻速運(yùn)動(dòng),速度為1cm/s.點(diǎn)Q停止運(yùn)動(dòng)時(shí),ABC也停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為ts)(0t6).

          1)當(dāng)t為何值時(shí),CQFH

          2)過(guò)點(diǎn)QQMFH于點(diǎn)N,交GF于點(diǎn)M,設(shè)五邊形GBCQM的面積為ycm2),求yt之間的函數(shù)關(guān)系式;

          3)在(2)的條件下,是否存在某一時(shí)刻,使點(diǎn)M在線段PC的中垂線上?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案