日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1 ,在矩形紙片中, ,折疊紙片使點落在邊上的處,折痕為,過點,連接

          求證:四邊形為菱形;

          當點邊上移動時,折痕的端點也隨之移動,若限定分別在邊.上移動,求出點在邊上移動的最大距離.

          【答案】1)見詳解;(22

          【解析】

          1)根據(jù)折疊的性質(zhì)得出;再根據(jù)平行的性質(zhì)及等角對等邊得出即可得證;

          2)根據(jù)正方形的性質(zhì),對稱的性質(zhì)以及勾股定理即可得出AE的值,從而得出DE的值;當點B與點M 重合時,點D離點E最近,此時DE=1cm,當點N與點C重合時,點D離點E最遠,此時四邊形EMCD為正方形,DE=DC=3cm,即可得出答案.

          1折疊紙片使點落在邊上的處,折痕為,

          C與點E關(guān)于MN對稱

          四邊形為菱形;

          2四邊形ABCD為矩形

          C、E關(guān)于MN對稱

          中,

          當點B與點M 重合時,點D離點E最近,DE=1cm

          當點N與點C重合時,點D離點E最遠

          此時四邊形EMCD為正方形,DE=DC=3cm

          EAD邊上移動最大距離為2cm

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系中,Aa0),Cb,2),且滿足(a+b2+|a-b+4|=0,過點CCBx軸于B.

          1)如圖1,求ABC的面積.

          2)如圖2,若過BBDACy軸于D,在ABC內(nèi)有一點E,連接AE.DE,若∠CAE+BDE=EAO+EDO,求∠AED的度數(shù).

          3)如圖3,在(2)的條件下,DEx軸交于點M,ACy軸交于點F,作AME的角平分線MP,在PE上有一點Q,連接QM,∠EAM+2PMQ=45°,當AE=2AM,FO=2QM時,求點E的縱坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】為了讓市民享受到更多的優(yōu)惠,相關(guān)部門擬確定一個折扣線,計劃使50%左右的人獲得折扣優(yōu)惠.某市針對乘坐地鐵的人群進行了調(diào)查.調(diào)查小組在各地鐵站隨機調(diào)查了該市1000人上一年乘坐地鐵的月均花費(單位:元),繪制了頻數(shù)分布直方圖,如圖所示.下列說法正確的是(

          ①每人乘坐地鐵的月均花費最集中的區(qū)域在80~100元范圍內(nèi);

          ②每人乘坐地鐵的月均花費的平均數(shù)范圍是40~60元范圍內(nèi);

          ③每人乘坐地鐵的月均花費的中位數(shù)在60~100元范圍內(nèi);

          ④乘坐地鐵的月均花費達到80元以上的人可以享受折扣.

          A.①②④B.①③④C.③④D.①②

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某超市銷售櫻桃,已知櫻桃的進價為15元/千克,如果售價為20元/千克,那么每天可售出250千克,如果售價為25元/千克,那么每天可獲利2000元,經(jīng)調(diào)查發(fā)現(xiàn):每天的銷售量y(千克)與售價x(元/千克)之間存在一次函數(shù)關(guān)系.

          (1)求y與x之間的函數(shù)關(guān)系式;

          (2)若櫻桃的售價不得高于28元/千克,請問售價定為多少時,該超市每天銷售櫻桃所獲的利潤最大?最大利潤是多少元?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知直線l1l2,直線l3和直線l1,l2交于C、D兩點,點P在直線CD上.

          (1)試寫出圖1中∠APB、∠PAC、∠PBD之間的關(guān)系,并說明理由;

          (2)如果P點在C、D之間運動時,∠APB、∠PAC、∠PBD之間的關(guān)系會發(fā)生變化嗎?

          答:   (填發(fā)生或不發(fā)生)

          (3)若點PCD兩點的外側(cè)運動時(P點與點C、D不重合),如圖2,圖3,試分別寫出∠PAC、∠APB、∠PBD之間的關(guān)系,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】探究發(fā)現(xiàn)

          如圖1,正方形中,點分別在上,.通過探究可以發(fā)現(xiàn)線段之間存在一定的數(shù)量關(guān)系:

          拓展延伸

          如圖2,正方形中,點分別在的延長線上,

          ①線段之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明;

          ②若,求的面積.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某公司為了更好治理污水質(zhì),改善環(huán)境,決定購買10臺污水處理設(shè)備,現(xiàn)有A,B兩種型號的設(shè)備,其中每臺的價格,月處理污水量如表:

          A

          B

          價格(萬元/)

          a

          b

          處理污水量(/)

          200

          160

          經(jīng)調(diào)查:購買一臺A型設(shè)備比購買一臺B型設(shè)備多3萬元,購買2A型設(shè)備比購買3B型設(shè)備少1萬元.

          (1)a,b的值;

          (2)經(jīng)預算:市治污公司購買污水處理設(shè)備的資金不超過78萬元,你認為該公司有哪幾種購買方案;

          (3)(2)間的條件下,若每月要求處理的污水量不低于1620噸,為了節(jié)約資金,請你為該公司設(shè)計一種最省錢的購買方案.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,拋物線軸交于點A(-1,0),頂點坐標為(1,n),y軸的交點在(0,2),(0,3)之間(包含端點),則下列結(jié)論:①當, ;;;,正確的是_______.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,直線l3l4l1l2分別相交于點A、B、CD,且∠1+2180°

          1)直線l1l2平行嗎?為什么?

          2)點E在線段AD上,∠ABE30°,∠BEC62°,求∠DCE的度數(shù).

          查看答案和解析>>

          同步練習冊答案