日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,把長方形ABCD沿BD對折,使C點落在C′的位置時,BC′與AD交于E,若AB=6cm,BC=8cm.
          (1)求證:△BED為等腰三角形;
          (2)求重疊部分△BED的面積.
          分析:(1)首先利用AAS得出△ABE≌△C′DE,可得出BE=ED,即可得出答案;
          (2)要求三角形BED的面積,可以以ED為底邊,DE邊上的高即AE為高來計算,因此關鍵是求出DE的長,AE,DE可轉(zhuǎn)化到一個直角三角形中,用勾股定理來求出DE的值,進而求出△BED的面積.
          解答:解:(1)∵△BDC′是由對折得到的,∴△BDC≌△BC′D,
          ∴∠C=∠C′=90°,AB=C′D,而∠A=90°,AB=CD,
          在△ABE和△C′DE中,
          ∠AEB=∠C′ED
          ∠A=∠C′=90°
          AB=C′D

          ∴△ABE≌△C′DE(AAS),
          ∴BE=DE,
          ∴△BED為等腰三角形;

          (2)設DE=BE=x,則AE=AD-DE=8-x,
          在Rt△AEB中,有 AB2+AE2=BE2,則
          x2-62=(8-x)2,
          解得x=
          25
          4

          則S△BED=
          1
          2
          DE×AB=
          1
          2
          ×6×
          25
          4
          =
          75
          4
          ,
          即重疊部分的面積為
          75
          4
          點評:本題主要考查了折疊變換和矩形以及三角形的有關知識,要讀清題意,熟練掌握折疊和直角三角形的相關知識得出DE的長是解題關鍵.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          (2012•鹽都區(qū)一模)問題提出
          我們在分析解決某些數(shù)學問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
          問題解決
          如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大。
          解:由圖可知:M=a2+b2,N=2ab.
          ∴M-N=a2+b2-2ab=(a-b)2
          ∵a≠b,∴(a-b)2>0.
          ∴M-N>0.
          ∴M>N.
          類比應用
          (1)已知:多項式M=2a2-a+1,N=a2-2a.試比較M與N的大。
          (2)已知:如圖2,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a<b<c,現(xiàn)將△ABC 補成長方形,使得△ABC的兩個頂
          點為長方形的兩個端點,第三個頂點落在長方形的這一邊的對邊上.
          ①這樣的長方形可以畫
          3
          3
          個;
          ②所畫的長方形中哪個周長最?為什么?
          拓展延伸
          已知:如圖3,銳角△ABC(其中BC為a,AC為b,AB為c)三邊滿足a<b<c,畫其BC邊上的內(nèi)接正方形EFGH,使E、F兩點在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,把長方形ABCD(AB=CD,AD=BC,∠A=∠ABC=∠C=∠CDA=90°)沿對角線BD對折,使點C落在點C,處,請說明AE=C′E.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2013屆江蘇省江陰市長涇片九年級上學期期末考試數(shù)學試卷(帶解析) 題型:解答題


          【問題提出】我們在分析解決某些數(shù)學問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
          【問題解決】如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大小.

          解:由圖可知:,

          ∵a≠b,∴>0.
          ∴M-N>0.∴M>N.
          【類比應用】(1)已知:多項式M =2a2-a+1 ,N =a2-2a .
          試比較M與N的大。
          (2)已知:如圖2,銳角△ABC (其中BC為a ,AC為 b,
          AB為c)三邊滿足a <b < c ,現(xiàn)將△ABC 補成長方形,
          使得△ABC的兩個頂點為長方形的兩個端點,第三個頂點落
          在長方形的這一邊的對邊上。
           
          ①這樣的長方形可以畫     個;
          ②所畫的長方形中哪個周長最?為什么?
          【拓展延伸】 已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          如圖,把長方形ABCD(AB=CD,AD=BC,∠A=∠ABC=∠C=∠CDA=90°)沿對角線BD對折,使點C落在點C,處,請說明AE=C′E.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          如圖,把長方形ABCD(AB=CD,AD=BC,∠A=∠ABC=∠C=∠CDA=90°)沿對角線BD對折,使點C落在點C,處,請說明AE=C′E.
          精英家教網(wǎng)

          查看答案和解析>>

          同步練習冊答案