日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在矩形紙片ABCD中,AB=8,BC=20,F(xiàn)為BC的中點(diǎn),沿過(guò)點(diǎn)F的直線(xiàn)翻折,使點(diǎn)B落在邊AD上,折痕交矩形的一邊于G,則折痕FG=   
          【答案】分析:過(guò)F作FE⊥AD于E,可得出四邊形ABFE為矩形,利用矩形的性質(zhì)得到AE=BF,AB=EF,分兩種情況考慮:(i)當(dāng)G在AB上,B′落在AE上時(shí),如圖1所示,由折疊的性質(zhì)得到B′F=BF,BG=B′G,在直角三角形EFB′中,利用勾股定理求出B′E的長(zhǎng),由AE-B′E求出AB′的長(zhǎng),設(shè)AG=x,由AB-AG表示出BG,即為B′G,在直角三角形AB′G中,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出AG的長(zhǎng),進(jìn)而求出BG的長(zhǎng),在直角三角形GBF中,利用勾股定理即可求出折痕FG的長(zhǎng);(ii)當(dāng)G在AE上,B′落在ED上,如圖2所示,同理求出B′E的長(zhǎng),設(shè)A′G=AG=y,由AE+B′E-AG表示出GB′,在直角三角形A′B′G中,利用勾股定理列出關(guān)于y的方程,求出方程的解得到y(tǒng)的值,求出AG的長(zhǎng),由AE-AG求出GE的長(zhǎng),在直角三角形GEF中,利用勾股定理即可求出折痕FG的長(zhǎng),綜上,得到所有滿(mǎn)足題意的折痕FG的長(zhǎng).
          解答:解:分兩種情況考慮:
          (i)如圖1所示,過(guò)F作FE⊥AD于E,G在AB上,B′落在AE上,可得四邊形ABFE為矩形,
          ∴EF=AB=8,AE=BF,
          又BC=20,F(xiàn)為BC的中點(diǎn),
          ∴由折疊可得:B′F=BF=BC=10,
          在Rt△EFB′中,根據(jù)勾股定理得:B′E==6,
          ∴AB′=AE-B′E=10-6=4,
          設(shè)AG=x,則有GB′=GB=8-x,
          在Rt△AGB′中,根據(jù)勾股定理得:GB′2=AG2+AB′2
          即(8-x)2=x2+42,
          解得:x=3,
          ∴GB=8-3=5,
          在Rt△GBF中,根據(jù)勾股定理得:GF==5;
          (ii)如圖2所示,過(guò)F作FE⊥AD于E,G在AE上,B′落在ED上,可得四邊形ABFE為矩形,
          ∴EF=AB=8,AE=BF,
          又BC=20,F(xiàn)為BC的中點(diǎn),
          ∴由折疊可得:B′F=BF=BC=10,
          在Rt△EFB′中,根據(jù)勾股定理得:B′E==6,
          ∴AB′=AE-B′E=10-6=4,
          設(shè)AG=A′G=y,則GB′=AB′-AG=AE+EB′-AG=16-y,A′B′=AB=8,
          在Rt△A′B′G中,根據(jù)勾股定理得:A′G2+A′B′2=GB′2
          即y2+82=(16-y)2,
          解得:y=6,
          ∴AG=6,
          ∴GE=AE-AG=10-6=4,
          在Rt△GEF中,根據(jù)勾股定理得:GF==4
          綜上,折痕FG=5或4
          故答案為:5或4
          點(diǎn)評(píng):此題考查了翻折變換-折疊問(wèn)題,涉及的知識(shí)有:矩形的判定與性質(zhì),勾股定理,利用了方程、轉(zhuǎn)化及分類(lèi)討論的思想,是一道綜合性較強(qiáng)的試題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)在矩形紙片ABCD中,AB=6,BC=8.將矩形紙片沿BD折疊,使點(diǎn)A落在點(diǎn)E處,設(shè)DE與BC相交于點(diǎn)F,求BF的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•太原)如圖,在矩形紙片ABCD中,AB=12,BC=5,點(diǎn)E在AB上,將△DAE沿DE折疊,使點(diǎn)A落在對(duì)角線(xiàn)BD上的點(diǎn)A′處,則AE的長(zhǎng)為
          10
          3
          10
          3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•黃石模擬)如圖,在矩形紙片ABCD中,AB=3,BC=4.把△BCD沿對(duì)角線(xiàn)BD折疊,使點(diǎn)C落在E處,BE交AD于點(diǎn)F;
          (1)求證:AF=EF;
          (2)求tan∠ABF的值;
          (3)連接AC交BE于點(diǎn)G,求AG的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在矩形紙片ABCD中,AB=6,BC=8,現(xiàn)將其沿EF對(duì)折,使得點(diǎn)C與點(diǎn)A重合,則AF的長(zhǎng)為
          25
          4
          cm
          25
          4
          cm

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          動(dòng)手操作:如圖,在矩形紙片ABCD中,AB=3,AD=5.如圖所示折疊紙片,使點(diǎn)A落在BC邊上的A′處,折痕為PQ,當(dāng)點(diǎn)A′在BC邊上移動(dòng)時(shí),折痕的端點(diǎn)P、Q也隨之移動(dòng).若限定點(diǎn)P、Q分別在AB、AD邊上移動(dòng).
          求:(1)當(dāng)點(diǎn)Q與點(diǎn)D重合時(shí),A′C的長(zhǎng)是多少?
          (2)點(diǎn)A′在BC邊上可移動(dòng)的最大距離是多少?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案