日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在Rt△ABC中,∠ACB=90°,BC>AC,以斜邊AB所在直線為x軸,以斜邊AB上的高所在直線為y軸,建立直角坐標(biāo)系,若OA2+OB2=17,且線段OA、OB的長(zhǎng)度是關(guān)于x的一元二次方程x2-mx+2(m-3)=0的兩個(gè)根.
          (1)求C點(diǎn)的坐標(biāo);
          (2)以斜邊AB為直徑作圓與y軸交于另一點(diǎn)E,求過(guò)A、B、E三點(diǎn)的拋物線的解析式,并畫(huà)出此拋物線的草圖;
          (3)在拋物線上是否存在點(diǎn)P,使△ABP與△ABC全等?若存在,求出符合條件的P點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

          【答案】分析:(1)線段OA、OB的長(zhǎng)度是關(guān)于x的一元二次方程x2-mx+2(m-3)=0的兩個(gè)根.根據(jù)韋達(dá)定理就可以得到關(guān)于OA,OB的兩個(gè)式子,再已知OA2+OB2=17,就可以得到一個(gè)關(guān)于m的方程,從而求出m的值.求出OA,OB.根據(jù)OC2=OA•OB就可以求出C點(diǎn)的坐標(biāo);
          (2)由第一問(wèn)很容易求出A,B的坐標(biāo).連接AB的中點(diǎn),設(shè)是M,與E,在直角△OME中,根據(jù)勾股定理就可以求出OE的長(zhǎng),得到E點(diǎn)的坐標(biāo),利用待定系數(shù)法就可以求出拋物線的解析式;
          (3)E點(diǎn)就是滿足條件的點(diǎn).同時(shí)C,E關(guān)于拋物線的對(duì)稱軸的對(duì)稱點(diǎn)也是滿足條件的點(diǎn).
          解答:解:(1)∵線段OA、OB的長(zhǎng)度是關(guān)于x的一元二次方程x2-mx+2(m-3)=0的兩個(gè)根,

          又∵OA2+OB2=17,
          ∴(OA+OB)2-2•OA•OB=17,(3)
          ∴把(1)(2)代入(3),得m2-4(m-3)=17,
          ∴m2-4m-5=0,
          解之,得m=-1或m=5,
          又知OA+OB=m>0,
          ∴m=-1應(yīng)舍去,
          ∴當(dāng)m=5時(shí),得方程x2-5x+4=0,
          解之,得x=1或x=4,
          ∵BC>AC,
          ∴OB>OA,
          ∴OA=1,OB=4,
          在Rt△ABC中,∠ACB=90°,CO⊥AB,
          ∴△AOC∽△COB,
          ∴OC2=OA•OB=1×4=4,
          ∴OC=2,
          ∴C(0,2);

          (2)∵OA=1,OB=4,C、E兩點(diǎn)關(guān)于x軸對(duì)稱,
          ∴A(-1,0),B(4,0),E(0,-2),
          設(shè)經(jīng)過(guò)A、B、E三點(diǎn)的拋物線的解析式為y=ax2+bx+c,
          ,
          ∴所求拋物線解析式為

          (3)存在,
          ∵點(diǎn)E是拋物線與圓的交點(diǎn),
          ∴Rt△ACB≌RT△AEB,
          ∴E(0,-2)符合條件,
          ∵圓心的坐標(biāo)(,0)在拋物線的對(duì)稱軸上,
          ∴這個(gè)圓和這條拋物線均關(guān)于拋物線的對(duì)稱軸對(duì)稱,
          ∴點(diǎn)E關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)E′也符合題意,
          ∴可求得E′(3,-2),
          ∴拋物線上存在點(diǎn)P符合題意,它們的坐標(biāo)是(0,-2)和(3,-2).
          點(diǎn)評(píng):本題是二次函數(shù)與圓以及全等三角形相結(jié)合的題目,難度較大,利用數(shù)形結(jié)合有利于對(duì)題目的理解.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過(guò)點(diǎn)D,且交AC于點(diǎn)F.
          (1)求證:BC是⊙O的切線;
          (2)若CD=6,AC=8,求AE.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
          (1)畫(huà)出符合條件的圖形.連接EF后,寫(xiě)出與△ABC一定相似的三角形;
          (2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫(xiě)出函數(shù)的定義域;
          (3)如果△CEF與△DEF相似,求AD的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在Rt△ABC中,BD⊥AC,sinA=
          3
          5
          ,則cos∠CBD的值是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
          5
          cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過(guò)點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
          (1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長(zhǎng)為
          (t-2)
          (t-2)
          cm,(用含t的代數(shù)式表示).
          (2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
          (3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案