日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,AB是⊙O的直徑, = ,AB=2,連接AC.
          (1)求證:∠CAB=45°;
          (2)若直線l為⊙O的切線,C是切點(diǎn),在直線l上取一點(diǎn)D,使BD=AB,BD所在的直線與AC所在的直線相交于點(diǎn)E,連接AD. (Ⅰ)試探究AE與AD之間的是數(shù)量關(guān)系,并證明你的結(jié)論;
          (Ⅱ)是否為定值?若是,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

          【答案】
          (1)證明:如圖1,連接BC,

          ∵AB是⊙O的直徑,

          ∴∠ACB=90°,

          ∵AC=BC,

          ∴∠CAB=∠CBA= =45°;


          (2)(Ⅰ)解:①當(dāng)∠ABD為銳角時(shí),如圖2所示,作BF⊥l于點(diǎn)F,

          由(1)知△ACB是等腰直角三角形,

          ∵OA=OB=OC,

          ∴△BOC為等腰直角三角形,

          ∵l是⊙O的切線,

          ∴OC⊥l,

          又BF⊥l,

          ∴四邊形OBFC是矩形,

          ∴AB=2OC=2BF,

          ∵BD=AB,

          ∴BD=2BF,

          ∴∠BDF=30°,

          ∴∠DBA=30°,∠BDA=∠BAD=75°,

          ∴∠CBE=∠CBA﹣∠DBA=45°﹣30°=15°,

          ∴∠DEA=∠CEB=90°﹣∠CBE=75°,

          ∴∠ADE=∠AED,

          ∴AD=AE;

          ②當(dāng)∠ABD為鈍角時(shí),如圖3所示,

          同理可得BF= BD,即可知∠BDC=30°,

          ∵OC⊥AB、OC⊥直線l,

          ∴AB∥直線l,

          ∴∠ABD=150°,∠ABE=30°,

          ∴∠BEC=90°﹣(∠ABE+∠ABC)=90°﹣(30°+45°)=15°,

          ∵AB=DB,

          ∴∠ADB= ∠ABE=15°,

          ∴∠BEC=∠ADE,

          ∴AE=AD;

          (Ⅱ)解:①如圖2,當(dāng)D在C左側(cè)時(shí),

          由(2)知CD∥AB,∠ACD=∠BAE,∠DAC=∠EBA=30°,

          ∴△CAD∽△BAE,

          = = ,

          ∴AE= CD,

          作EI⊥AB于點(diǎn)I,

          ∵∠CAB=45°、∠ABD=30°,

          ∴BE=2EI=2× AE= AE= × CD=2CD,

          =2;

          ②如圖3,當(dāng)點(diǎn)D在點(diǎn)C右側(cè)時(shí),過(guò)點(diǎn)E作EI⊥AB于I,

          由(2)知∠ADC=∠BEA=15°,

          ∵AB∥CD,

          ∴∠EAB=∠ACD,

          ∴△ACD∽△BAE,

          = =

          CD,

          ∵BA=BD,∠BAD=∠BDA=15°,

          ∴∠IBE=30°,

          ∴BE=2EI=2× AE= AE= × CD=2CD,

          =2.


          【解析】(1)由AB是⊙O的直徑知∠ACB=90°,由 = 即AC=BC可得答案;(2)(Ⅰ)分∠ABD為銳角和鈍角兩種情況,①作BF⊥l于點(diǎn)F,證四邊形OBFC是矩形可得AB=2OC=2BF,結(jié)合BD=AB知∠BDF=30°,再求出∠BDA和∠DEA度數(shù)可得;②同理BF= BD,即可知∠BDC=30°,分別求出∠BEC、∠ADB即可得;(Ⅱ)分D在C左側(cè)和點(diǎn)D在點(diǎn)C右側(cè)兩種情況,作EI⊥AB,證△CAD∽△BAE得 = = ,即AE= CD,結(jié)合EI= BE、EI= AE,可得BE=2EI=2× AE= AE= × CD=2CD,從而得出結(jié)論.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象相交于點(diǎn)A(1,5)和點(diǎn)B,與y軸相交于點(diǎn)C(0,6).
          (1)求一次函數(shù)和反比例函數(shù)的解析式;
          (2)現(xiàn)有一直線l與直線y=kx+b平行,且與反比例函數(shù)y= 的圖象在第一象限有且只有一個(gè)交點(diǎn),求直線l的函數(shù)解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,直線y=kx+b(b>0)與拋物線 相交于點(diǎn)A(x1 , y1),B(x2 , y2)兩點(diǎn),與x軸正半軸相交于點(diǎn)D,與y軸相交于點(diǎn)C,設(shè)△OCD的面積為S,且kS+32=0.

          (1)求b的值;
          (2)求證:點(diǎn)(y1 , y2)在反比例函數(shù) 的圖象上;
          (3)求證:x1OB+y2OA=0.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】小林準(zhǔn)備進(jìn)行如下操作實(shí)驗(yàn);把一根長(zhǎng)為40cm的鐵絲剪成兩段,并把每一段各圍成一個(gè)正方形.
          (1)要使這兩個(gè)正方形的面積之和等于58cm2 , 小林該怎么剪?
          (2)小峰對(duì)小林說(shuō):“這兩個(gè)正方形的面積之和不可能等于48cm2 . ”他的說(shuō)法對(duì)嗎?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,平面直角坐標(biāo)系中O是原點(diǎn),ABCD的頂點(diǎn)A,C的坐標(biāo)分別是(8,0),(3,4),點(diǎn)D,E把線段OB三等分,延長(zhǎng)CD、CE分別交OA、AB于點(diǎn)F,G,連接FG.則下列結(jié)論:
          ①F是OA的中點(diǎn);②△OFD與△BEG相似;③四邊形DEGF的面積是 ;④OD=
          其中正確的結(jié)論是(填寫(xiě)所有正確結(jié)論的序號(hào)).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在正方形ABCD中,點(diǎn)E,N,P,G分別在邊AB,BC,CD,DA上,點(diǎn)M,F(xiàn),Q都在對(duì)角線BD上,且四邊形MNPQ和AEFG均為正方形,則正方形MNPQ與正方形AEFG的面積之比等于。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】對(duì)一批襯衣進(jìn)行抽檢,統(tǒng)計(jì)合格襯衣的件數(shù),得到如下的頻數(shù)表:

          抽查件數(shù)(件)

          100

          150

          200

          500

          800

          1000

          合格頻數(shù)

          85

          141

          176

          445

          724

          900

          根據(jù)表中數(shù)據(jù),下列說(shuō)法錯(cuò)誤的是(
          A.抽取100件的合格頻數(shù)是85
          B.任抽取一件襯衣是合格品的概率是0.8
          C.抽取200件的合格頻率是0.88
          D.出售1200件襯衣,次品大約有120件

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為緩解交通擁堵,減少環(huán)境污染,倡導(dǎo)低碳出行,構(gòu)建慢行交通體系,南潯中心城區(qū)正在努力建設(shè)和完善公共自行車服務(wù)系統(tǒng).圖1所示的是一輛自行車的實(shí)物圖.圖2是自行車的車架示意圖.CE=30cm,DE=24cm,AD=26cm,DE⊥AC于點(diǎn)E,座桿CF的長(zhǎng)為20cm,點(diǎn)A、E、C、F在同一直線上,且∠CAB=75°.

          (1)求車架中AE的長(zhǎng);
          (2)求車座點(diǎn)F到車架AB的距離.(結(jié)果精確到1cm,參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,甲轉(zhuǎn)盤(pán)被分成 3 個(gè)面積相等的扇形,乙轉(zhuǎn)盤(pán)被分成4個(gè)面積相等的扇形,每一個(gè)扇形都標(biāo)有相應(yīng)的數(shù)字.同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán),當(dāng)轉(zhuǎn)盤(pán)停止后,設(shè)甲轉(zhuǎn)盤(pán)中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為x,乙轉(zhuǎn)盤(pán)中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為y(當(dāng)指針指在邊界線上時(shí),重轉(zhuǎn),直到指針指向一個(gè)區(qū)域?yàn)橹梗?
          (1)請(qǐng)你用畫(huà)樹(shù)狀圖或列表格的方法,求點(diǎn)(x,y)落在第二象限內(nèi)的概率;
          (2)直接寫(xiě)出點(diǎn)(x,y)落在函數(shù)y=﹣ 圖象上的概率.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案