日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2009•咸寧)如圖,將矩形ABCD沿對(duì)角線AC剪開(kāi),再把△ACD沿CA方向平移得到△A′C′D′.
          (1)證明△A′AD′≌△CC′B;
          (2)若∠ACB=30°,試問(wèn)當(dāng)點(diǎn)C'在線段AC上的什么位置時(shí),四邊形ABC′D′是菱形,并請(qǐng)說(shuō)明理由.
          【答案】分析:(1)根據(jù)已知利用SAS判定△A′AD′≌△CC′B;
          (2)由已知可推出四邊形ABC′D′是平行四邊形,只要再證明一組鄰邊相等即可確定四邊形ABC′D′是菱形,由已知可得到BC′=AC,AB=AC,從而得到AB=BC′,所以四邊形ABC′D′是菱形.
          解答:(1)證明:∵四邊形ABCD是矩形,
          △A′C′D′由△ACD平移得到,
          ∴A′D′=AD=CB,AA′=CC′,A′D′∥AD∥BC.
          ∴∠D′A′C′=∠BCA.
          ∴△A′AD′≌△CC′B.

          (2)解:當(dāng)點(diǎn)C′是線段AC的中點(diǎn)時(shí),四邊形ABC′D′是菱形.
          理由如下:
          ∵四邊形ABCD是矩形,△A′C′D′由△ACD平移得到,
          ∴C′D′=CD=AB.
          由(1)知AD′=C′B.
          ∴四邊形ABC′D′是平行四邊形.
          在Rt△ABC中,點(diǎn)C′是線段AC的中點(diǎn),
          ∴BC′=AC.
          而∠ACB=30°,
          ∴AB=AC.
          ∴AB=BC′.
          ∴四邊形ABC′D′是菱形.
          點(diǎn)評(píng):本題即考查了全等的判定及菱形的判定,注意對(duì)這兩個(gè)判定定理的準(zhǔn)確掌握.考查了學(xué)生綜合運(yùn)用數(shù)學(xué)的能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源:2011年浙江省杭州市中考數(shù)學(xué)模擬試卷(24)(解析版) 題型:解答題

          (2009•咸寧)如圖,將矩形ABCD沿對(duì)角線AC剪開(kāi),再把△ACD沿CA方向平移得到△A′C′D′.
          (1)證明△A′AD′≌△CC′B;
          (2)若∠ACB=30°,試問(wèn)當(dāng)點(diǎn)C'在線段AC上的什么位置時(shí),四邊形ABC′D′是菱形,并請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2010年初中數(shù)學(xué)第一輪復(fù)習(xí)教學(xué)案例.5.2.三角形的基本概念與基本性質(zhì)(解析版) 題型:填空題

          (2009•咸寧)如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,過(guò)點(diǎn)O作EF∥BC交AB于E,交AC于F,過(guò)點(diǎn)O作OD⊥AC于D.下列四個(gè)結(jié)論:
          ①∠BOC=90°+∠A;
          ②以E為圓心,BE為半徑的圓與以F為圓心,CF為半徑的圓外切;
          ③設(shè)OD=m,AE+AF=n,則S△AEF=mn;
          ④EF不能成為△ABC的中位線.
          其中正確的結(jié)論是    .(把你認(rèn)為正確結(jié)論的序號(hào)都填上,答案格式如:“①,②,③,④”)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2009年湖北省咸寧市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2009•咸寧)如圖①,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),邊長(zhǎng)為5的正三角形OAB的OA邊在x軸的正半軸上.點(diǎn)C、D同時(shí)從點(diǎn)O出發(fā),點(diǎn)C以1單位長(zhǎng)/秒的速度向點(diǎn)A運(yùn)動(dòng),點(diǎn)D為2個(gè)單位長(zhǎng)/秒的速度沿折線OBA運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,0<t<5.
          (1)當(dāng)0<t<時(shí),證明DC⊥OA;
          (2)若△OCD的面積為S,求S與t的函數(shù)關(guān)系式;
          (3)以點(diǎn)C為中心,將CD所在的直線順時(shí)針旋轉(zhuǎn)60°交AB邊于點(diǎn)E,若以O(shè)、C、D、E為頂點(diǎn)的四邊形是梯形,求點(diǎn)E的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2009年湖北省咸寧市中考數(shù)學(xué)試卷(解析版) 題型:填空題

          (2009•咸寧)如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,過(guò)點(diǎn)O作EF∥BC交AB于E,交AC于F,過(guò)點(diǎn)O作OD⊥AC于D.下列四個(gè)結(jié)論:
          ①∠BOC=90°+∠A;
          ②以E為圓心,BE為半徑的圓與以F為圓心,CF為半徑的圓外切;
          ③設(shè)OD=m,AE+AF=n,則S△AEF=mn;
          ④EF不能成為△ABC的中位線.
          其中正確的結(jié)論是    .(把你認(rèn)為正確結(jié)論的序號(hào)都填上,答案格式如:“①,②,③,④”)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案