日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標(biāo)系中,已知RtAOB的兩直角邊OAOB分別在x軸的負(fù)半軸和y軸的正半軸上,且OA、OB的長(zhǎng)滿足|OA﹣8|+(OB﹣620ABO的平分線交x軸于點(diǎn)C過點(diǎn)CAB的垂線,垂足為點(diǎn)D,交y軸于點(diǎn)E

          1)求線段AB的長(zhǎng);

          2)求直線CE的解析式;

          3)若M是射線BC上的一個(gè)動(dòng)點(diǎn),在坐標(biāo)平面內(nèi)是否存在點(diǎn)P,使以A、B、M、P為頂點(diǎn)的四邊形是矩形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

          【答案】1)求線段AB=10;(2)求直線CE的解析式y=-x-4;(3)點(diǎn)P的坐標(biāo)(-4,8)、(3,2)

          【解析】試題分析:

          (1) 根據(jù)絕對(duì)值和平方的非負(fù)性可以獲得線段OAOB的長(zhǎng). 利用勾股定理可以得到線段AB的長(zhǎng).

          (2) 要求直線CE的解析式,需要先求點(diǎn)C和點(diǎn)E的坐標(biāo). 利用角平分線的性質(zhì)可以得到OB=DB,OC=DC. 利用已知的線段長(zhǎng)度和各線段之間的關(guān)系,在RtADC中通過勾股定理可以獲得關(guān)于OC的方程,求解這一方程即可獲得點(diǎn)C的坐標(biāo). 利用對(duì)頂角的關(guān)系可以證明△ADC與△EOC全等進(jìn)而可以利用線段AD的長(zhǎng)獲得點(diǎn)E的坐標(biāo). 利用點(diǎn)C和點(diǎn)E的坐標(biāo)通過待定系數(shù)法即可求得直線CE的解析式.

          (3) 根據(jù)題意可以在第一和第二象限內(nèi)各找到一個(gè)符合題意的點(diǎn)P. 因此,本小題應(yīng)該對(duì)這兩種情況分別進(jìn)行討論. 在求解位于第二象限內(nèi)的點(diǎn)P坐標(biāo)的時(shí)候,可以過點(diǎn)Py軸的垂線PG. 利用△BOC和△AMC相似的關(guān)系獲得線段AM的長(zhǎng),利用矩形的性質(zhì)得到線段PB的長(zhǎng). 利用△PGB與△BOC相似的關(guān)系獲得線段PGBG的長(zhǎng),進(jìn)而寫出點(diǎn)P的坐標(biāo). 在求解位于第一象限內(nèi)的點(diǎn)P坐標(biāo)的時(shí)候,可以過點(diǎn)Py軸的垂線PH. 利用△ABM與△DBC相似的關(guān)系獲得線段AM的長(zhǎng)利用矩形的性質(zhì)得到線段PB的長(zhǎng). 利用△PHB與△BOA相似的關(guān)系獲得線段PHBH的長(zhǎng),進(jìn)而寫出點(diǎn)P的坐標(biāo).

          試題解析:

          (1) ,

          OA=8,OB=6.

          ∴在RtAOB中, .

          (2) 設(shè)OC=m,AC=OA-OC=8-m.

          ∵點(diǎn)C在∠ABO的平分線上,

          .

          OCBE,CDAB,

          ∴∠BOC=BDC=90°.

          ∵在△BOC和△BDC中,

          ,

          BOC≌△BDC (AAS).

          OB=DB=6,OC=DC=m.

          AD=AB-BD=10-6=4.

          ∵在RtADC中,AC2=AD2+CD2,

          (8-m)2=42+m2,

          m=3.

          OC=m=3.

          ∴點(diǎn)C的坐標(biāo)為(-3, 0).

          ∵在△ADC和△EOC中,

          ,

          ADC≌△EOC (ASA).

          AD=EO=4.

          ∴點(diǎn)E的坐標(biāo)為(0, -4).

          設(shè)直線CE的解析式為y=kx+b (k0).

          將點(diǎn)C和點(diǎn)E的坐標(biāo)分別代入直線CE的解析式,得

          ,

          解之,得

          ,

          ∴直線CE的解析式為.

          (3) 點(diǎn)P的坐標(biāo)為(-4, 8)(3, 2). 求解過程如下.

          根據(jù)題意,分別對(duì)下面兩種情況進(jìn)行討論.

          ①如圖①,四邊形AMBP為矩形.

          過點(diǎn)PPGOB,垂足為G.

          OC=3,OB=6,

          ∴在RtBOC中, .

          ∵∠BOC=AMC=90°,BCO=ACM,

          ∴△BOC∽△AMC,

          .

          AC=OA-OC=8-3=5,OB=6, ,

          .

          ∴在矩形AMBP中, .

          ∵∠PBM=90°,

          ∴∠PBG+OBC=180°-PBM=180°-90°=90°.

          ∵在RtBOC中,∠BCO+OBC=90°

          ∴∠PBG=BCO.

          ∵∠PGB=BOC=90°,PBG=BCO

          ∴△PGB∽△BOC,

          .

          , .

          OG=OB+BG=6+2=8.

          ∴點(diǎn)P的坐標(biāo)為(-4, 8).

          ②如圖②,四邊形AMBP為矩形.

          如圖②,過點(diǎn)PPHOB,垂足為H.

          CDAB,AMAB

          CDAM,

          ABM∽△DBC

          .

          CD=OC=3,BD=OB=6,AB=10,

          .

          ∴在矩形AMBP中,BP=MA=5.

          ∵∠ABO+PBH=ABP=90°,

          又∵在RtAOB中,∠ABO+BAO=90°

          ∴∠PBH=BAO.

          ∵∠PHB=BOA=90°,PBH=BAO

          ∴△PHB∽△BOA,

          .

          , .

          OH=OB-BH=6-4=2.

          ∴點(diǎn)P的坐標(biāo)為(3, 2).

          綜上所述,點(diǎn)P的坐標(biāo)為(-4, 8)(3, 2).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】解不等式:3(x+2)>﹣1﹣2(x﹣1),并把解集在數(shù)軸上表示出來.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】若一個(gè)多邊形的內(nèi)角和小于其外角和,則這個(gè)多邊形的邊數(shù)是( )

          A. 3 B. 4 C. 5 D. 6

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】因式分解4a3-a的結(jié)果是( )

          A. a(4a2-1) B. a(2a-1)2 C. a(2a+1)(2a-1) D. 4a(a+1)(a-1)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知:∠MON=30°,點(diǎn)A1、A2、A3…在射線ON上,點(diǎn)B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A6B6A7的邊長(zhǎng)為(
          A.6
          B.12
          C.32
          D.64

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某高校共有5個(gè)大餐廳和2個(gè)小餐廳.經(jīng)過測(cè)試:同時(shí)開放1個(gè)大餐廳、2個(gè)小餐廳,可供1680名學(xué)生就餐;同時(shí)開放2個(gè)大餐廳、1個(gè)小餐廳,可供2280名學(xué)生就餐.
          (1)求1個(gè)大餐廳、1個(gè)小餐廳分別可供多少名學(xué)生就餐;
          (2)若7個(gè)餐廳同時(shí)開放,能否供全校的5300名學(xué)生就餐?請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知直線y=kx+6與拋物線y=+bx+c相交于A,B兩點(diǎn),且點(diǎn)A(1,4)為拋物線的頂點(diǎn),點(diǎn)B在x軸上.

          (1)求拋物線的解析式;

          (2)在(1)中拋物線的第三象限圖象上是否存在一點(diǎn)P,使POB與POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;

          (3)若點(diǎn)Q是y軸上一點(diǎn),且ABQ為直角三角形,求點(diǎn)Q的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,RtABC中,ABC=90°,以AB為直徑作半圓O交AC與點(diǎn)D,點(diǎn)E為BC的中點(diǎn),連接DE.

          (1)求證:DE是半圓O的切線.

          (2)若BAC=30°,DE=2,求AD的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某興趣小組決定去市場(chǎng)購(gòu)買A,B,C三種儀器,其單價(jià)分別為3元,5元,7元,購(gòu)買這批儀器需花62元;經(jīng)過討價(jià)還價(jià),最后以每種單價(jià)各下降1元成交,結(jié)果只花50元就買下了這批儀器.那么A種儀器最多可買(  )
          A.8件
          B.7件
          C.6件
          D.5件

          查看答案和解析>>

          同步練習(xí)冊(cè)答案