日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2002•崇文區(qū))已知:在平面直角坐標系xOy中,拋物線y=ax2+bx+c與y軸交于點C(0,4),與x軸交于A、B兩點,點A在點B的左側(cè),tan∠BCO=,且S△AOC:S△BOC=4:1.求:此拋物線的解析式.

          【答案】分析:已知了C點的坐標,即知道了OC的長,可在直角三角形BOC中根據(jù)∠BCO的正切值求出OB的長,即可得出B點的坐標.已知了△AOC和△BOC的面積比,由于兩三角形的高相等,因此面積比就是AO與OB的比.由此可求出OA的長,也就求出了A點的坐標,然后根據(jù)A、B、C三點的坐標即可用待定系數(shù)法求出拋物線的解析式.
          解答:解:在Rt△BOC中
          ∵OC=4,tan∠BCO=
          ∴OB=1因此B點的坐標為(1,0)
          ∵S△AOC:S△BOC=4:1
          ∴AO:OB=4:1
          ∵OB=1
          ∴AO=4,即A點的坐標為(-4,0)
          設(shè)拋物線的解析式為y=a(x+4)(x-1)
          由于拋物線過C點的坐標(0,4),則有
          4×(-1)×a=4
          ∴a=-1
          ∴拋物線的解析式為
          y=-(x+4)(x-1)=-x2-3x+4.
          點評:本題是二次函數(shù)的綜合題型,其中涉及到的知識點有拋物線的頂點公式和三角形的面積求法.在求有關(guān)動點問題時要注意分析題意分情況討論結(jié)果.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2002•崇文區(qū))如圖,在梯形ABCD中,DC∥AB,將梯形對折,使點D、C分別落在AB上的D′、C′處,折痕為EF,若CD=3cm,EF=4cm,則AD′+BC′=
          2
          2
          cm.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

          (2002•崇文區(qū))已知:在平面直角坐標系xOy中,拋物線y=ax2+bx+c與y軸交于點C(0,4),與x軸交于A、B兩點,點A在點B的左側(cè),tan∠BCO=,且S△AOC:S△BOC=4:1.求:此拋物線的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:填空題

          (2002•崇文區(qū))已知直線y=kx+b經(jīng)過點(3,-1)和點(-6,5),k=    ,b=   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2002年北京市崇文區(qū)中考數(shù)學(xué)試卷(解析版) 題型:填空題

          (2002•崇文區(qū))已知直線y=kx+b經(jīng)過點(3,-1)和點(-6,5),k=    ,b=   

          查看答案和解析>>

          同步練習(xí)冊答案