日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,AB是⊙O的直徑,MOA上一點(diǎn),過MAB的垂線交AC于點(diǎn)N,交BC的延長(zhǎng)線于點(diǎn)E,直線CFEN于點(diǎn)F,若∠BAC=30°,且∠ECF=E.

          (1)試判斷CF與⊙O的位置關(guān)系,并說明理由;

          (2)設(shè)⊙O的半徑為2,且AC=CE,求AM的長(zhǎng).

          【答案】(1)證明見解析;(2)3﹣.

          【解析】

          (1)要證CF為⊙O的切線,只要證明∠OCF=90°即可;

          (2)根據(jù)三角函數(shù)求得AC的長(zhǎng),從而可求得BE的長(zhǎng),再利用三角函數(shù)可求出MB的值,從而可得到MO的長(zhǎng),進(jìn)而得出AM.

          (1)證明:如圖,連接OC,

          AB是⊙O的直徑,

          ∴∠ACB=90°,

          ∵∠BAC=30°,

          ∴∠ABC=60°;

          RtEMB中,∵∠E+MBE=90°,

          ∴∠E=30°;

          ∵∠E=ECF,

          ∴∠ECF=30°,

          ∴∠ECF+OCB=90°;

          ∵∠ECF+OCB+OCF=180°,

          ∴∠OCF=90°,

          CF為⊙O的切線;

          (2)在RtACB中,∠A=30°,ACB=90°,

          AC=ABcos30°=2,BC=ABsin30°=2;

          AC=CE,

          BE=BC+CE=2+2,在RtEMB中,∠E=30°,BME=90°,

          MB=BEsin30°=1+

          MO=MB﹣OB=-1.

          AM=2﹣+1=3﹣.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,直線l是第一、三象限的角平分線.

          實(shí)驗(yàn)與探究:

          1)由圖觀察易知A02)關(guān)于直線l的對(duì)稱點(diǎn)A′的坐標(biāo)為(2,0),請(qǐng)?jiān)趫D中分別標(biāo)明B53)、C﹣25)關(guān)于直線l的對(duì)稱點(diǎn)B′、C′的位置,并寫出他們的坐標(biāo):B′   、C′   ;

          歸納與發(fā)現(xiàn):

          2)結(jié)合圖形觀察以上三組點(diǎn)的坐標(biāo),你會(huì)發(fā)現(xiàn):坐標(biāo)平面內(nèi)任一點(diǎn)Pa,b)關(guān)于第一、三象限的角平分線l的對(duì)稱點(diǎn)P′的坐標(biāo)為   ;

          運(yùn)用與拓廣:

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點(diǎn)四點(diǎn)在一條直線上,,.老師說:再添加一個(gè)條件就可以使.下面是課堂上三個(gè)同學(xué)的發(fā)言,甲說:添加;乙說:添加;丙說:添加.

          1)甲、乙、丙三個(gè)同學(xué)說法正確的是________

          2)請(qǐng)你從正確的說法中選擇一種,給出你的證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知點(diǎn)A(﹣4,2),B(﹣1,﹣2),平行四邊形ABCD的對(duì)角線交于坐標(biāo)原點(diǎn)O.

          (1)請(qǐng)直接寫出點(diǎn)C、D的坐標(biāo);

          (2)寫出從線段AB到線段CD的變換過程;

          (3)求△AOB的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】問題:如圖①,在直角三角形中,于點(diǎn),可知(不需要證明);

          (1)探究:如圖②,,射線在這個(gè)角的內(nèi)部,點(diǎn)、的邊、上,且,于點(diǎn)于點(diǎn).證明:;

          (2)證明:如圖③,點(diǎn)、的邊、上,點(diǎn)、內(nèi)部的射線上,、分別是的外角。已知,.求證:;

          (3)應(yīng)用:如圖④,在中,,.點(diǎn)在邊上,,點(diǎn)、在線段上,.若的面積為15,則的面積之和為________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,把拋物線y=x2平移得到拋物線m,拋物線m經(jīng)過點(diǎn)A(﹣6,0)和原點(diǎn)O(0,0),它的頂點(diǎn)為P,它的對(duì)稱軸與拋物線y=x2交于點(diǎn)Q,則圖中陰影部分的面積為  ▲  

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,足球場(chǎng)上守門員在O處開出一高球,球從離地面1米的A處飛出(A在y軸上),運(yùn)動(dòng)員乙在距O點(diǎn)6米的B處發(fā)現(xiàn)球在自己頭的正上方達(dá)到最高點(diǎn)M,距地面約4米高,球落地后又一次彈起.據(jù)實(shí)驗(yàn)測(cè)算,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.

          (1)求足球開始飛出到第一次落地時(shí),該拋物線的表達(dá)式.

          (2)足球第一次落地點(diǎn)C距守門員多少米?(取

          (3)運(yùn)動(dòng)員乙要搶到第二個(gè)落點(diǎn)D,他應(yīng)再向前跑多少米?(取

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某水產(chǎn)養(yǎng)殖戶進(jìn)行小龍蝦養(yǎng)殖.已知每千克小龍蝦養(yǎng)殖成本為6元,在整個(gè)銷售旺季的80天里,銷售單價(jià)p(/千克)與時(shí)間第t()之間的函數(shù)關(guān)系為:

          p=,日銷售量y(千克)與時(shí)間第t()之間的函數(shù)關(guān)系如圖所示.

          (1)求日銷售量y與時(shí)間t的函數(shù)解析式;

          (2)哪一天的日銷售利潤(rùn)最大?最大利潤(rùn)是多少?

          (3)該養(yǎng)殖戶有多少天日銷售利潤(rùn)不低于2 400元?

          (4)在實(shí)際銷售的前40天中,該養(yǎng)殖戶決定每銷售1千克小龍蝦,就捐贈(zèng)m(m<7)元給村里的特困戶.在這前40天中,每天扣除捐贈(zèng)后的日銷售利潤(rùn)隨時(shí)間t的增大而增大,求m的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,以D為頂點(diǎn)的拋物線y=﹣x2+bx+cx軸于A、B兩點(diǎn),交y軸于點(diǎn)C,直線BC的表達(dá)式為y=﹣x+3.

          (1)求拋物線的表達(dá)式;

          (2)在直線BC上有一點(diǎn)P,使PO+PA的值最小,求點(diǎn)P的坐標(biāo);

          (3)在x軸上是否存在一點(diǎn)Q,使得以A、C、Q為頂點(diǎn)的三角形與△BCD相似?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案