【答案】
分析:(1)根據(jù)A,B,C三點(diǎn)的坐標(biāo),可以運(yùn)用交點(diǎn)式法求得拋物線(xiàn)的解析式.再根據(jù)頂點(diǎn)的坐標(biāo)公式求得拋物線(xiàn)的頂點(diǎn)坐標(biāo);
(2)根據(jù)B,D的坐標(biāo)運(yùn)用待定系數(shù)法求得直線(xiàn)BD的解析式,再根據(jù)三角形的面積公式以及y與x之間的函數(shù)關(guān)系式得到s與x之間的函數(shù)關(guān)系式.點(diǎn)P的橫坐標(biāo)即x的值位于點(diǎn)D和點(diǎn)B的橫坐標(biāo)之間.根據(jù)二次函數(shù)的頂點(diǎn)式即可分析其最值;
(3)根據(jù)(2)中的坐標(biāo)得點(diǎn)E和點(diǎn)C重合.過(guò)P′作P′H⊥y軸于H,P′F交y軸于點(diǎn)M.要求P′H和OH的長(zhǎng).P′H的長(zhǎng)可以運(yùn)用直角三角形P′CM的面積進(jìn)行計(jì)算.設(shè)MC=m,則MF=m,P′M=3-m,P′E=

.根據(jù)勾股定理列方程求解,得到直角三角形P′CM的三邊后,再根據(jù)直角三角形的面積公式進(jìn)行計(jì)算.要求OH的長(zhǎng),已知點(diǎn)C的坐標(biāo),只需根據(jù)勾股定理進(jìn)一步求得CH的長(zhǎng)即可.把求得的點(diǎn)P的坐標(biāo)代入拋物線(xiàn)解析式即可判斷點(diǎn)P′是否在該拋物線(xiàn)上.
解答:
解:(1)設(shè)y=a(x+1)(x-3),(1分)
把C(0,3)代入,得a=-1,(2分)
∴拋物線(xiàn)的解析式為:y=-x
2+2x+3.(4分)
頂點(diǎn)D的坐標(biāo)為(1,4).(5分)
(2)設(shè)直線(xiàn)BD解析式為:y=kx+b(k≠0),把B、D兩點(diǎn)坐標(biāo)代入,
得

,(6分)
解得k=-2,b=6.
∴直線(xiàn)BD解析式為y=-2x+6.(7分)
s=

PE•OE=

xy=

x(-2x+6)=-x
2+3x,(8分)
∴s=-x
2+3x(1<x<3)(9分)
s=-(x
2-3x+

)+

=-(x-

)
2+

.(10分)
∴當(dāng)

時(shí),s取得最大值,最大值為

.(11分)
(3)當(dāng)s取得最大值,

,y=3,
∴

.(5分)
∴四邊形PEOF是矩形.
作點(diǎn)P關(guān)于直線(xiàn)EF的對(duì)稱(chēng)點(diǎn)P′,連接P′E、P′F.
法一:過(guò)P′作P′H⊥y軸于H,P′F交y軸于點(diǎn)M.
設(shè)MC=m,∵CO∥PF,
∴∠2=∠PFC,
由對(duì)稱(chēng)可知∠PFC=∠P′FC,
∴∠2=∠P′FC,
則MF=MC=m,P′M=3-m,P′E=

.
在Rt△P′MC中,由勾股定理,

.
解得m=

.
∵CM•P′H=P′M•P′E,
∴P′H=

.
由△EHP′∽△EP′M,可得

,EH=

.
∴OH=3-

.
∴P′坐標(biāo)

.(13分)
法二:連接PP′,交CF于點(diǎn)H,分別過(guò)點(diǎn)H、P′作PC的垂線(xiàn),垂足為M、N.
易證△CMH∽△HMP.

∴

.
設(shè)CM=k,則MH=2k,PM=4k.
∴PC=5k=

,k=

.
由三角形中位線(xiàn)定理,PN=8k=

,P′N(xiāo)=4k=

.
∴CN=PN-PC=

-

=

,即x=-

.
y=PF-P′N(xiāo)=3-

∴P′坐標(biāo)(-

,

).(13分)
把P′坐標(biāo)(-

)代入拋物線(xiàn)解析式,不成立,所以P′不在拋物線(xiàn)上.(14分)
點(diǎn)評(píng):能夠熟練運(yùn)用待定系數(shù)法求得函數(shù)的解析式;能夠根據(jù)二次函數(shù)的解析式求得函數(shù)的最值;能夠熟練運(yùn)用幾何知識(shí),如勾股定理、相似三角形的性質(zhì)進(jìn)行計(jì)算,注意數(shù)形結(jié)合的思想.