日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,AB是半圓O的直徑,CD⊥AB于點(diǎn)C,交半圓于點(diǎn)E,DF切半圓于點(diǎn)F.已知∠AEF=135°.
          (1)求證:DF∥AB;
          (2)若OC=CE,BF= ,求DE的長(zhǎng).

          【答案】
          (1)證明:連接OF,

          ∵A、E、F、B四點(diǎn)共圓,

          ∴∠AEF+∠B=180°,

          ∵∠AEF=135°,

          ∴∠B=45°,

          ∴∠AOF=2∠B=90°,

          ∵DF切⊙O于F,

          ∴∠DFO=90°,

          ∵DC⊥AB,

          ∴∠DCO=90°,

          即∠DCO=∠FOC=∠DFO=90°,

          ∴四邊形DCOF是矩形,

          ∴DF∥AB


          (2)解:過(guò)E作EM⊥BF于M,

          ∵四邊形DCOF是矩形,

          ∴OF=DC=OA,

          ∵OC=CE,

          ∴AC=DE,

          設(shè)DE=x,則AC=x,

          ∵在Rt△FOB中,∠FOB=90°,OF=OB,BF=2 ,由勾股定理得:OF=OB=2,

          則AB=4,BC=4﹣x,

          ∵AC=DE,OCDF=CE,

          ∴由勾股定理得:AE=EF,

          ∴∠ABE=∠FBE,

          ∵EC⊥AB,EM⊥BF

          ∴EC=EM,∠ECB=∠M=90°,

          在Rt△ECA和Rt△EMF中

          ∴Rt△ECA≌Rt△EMF,

          ∴AC=MF=DE=x,

          在Rt△ECB和Rt△EMB中,由勾股定理得:BC=BM,

          ∴BF=BM﹣MF=BC﹣MF=4﹣x﹣x=2 ,

          解得:x=2﹣ ,

          即DE=2﹣


          【解析】(1)證明:連接OF,根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠AEF+∠B=180°,由于∠AEF=135°,得出∠B=45°,于是得到∠AOF=2∠B=90°,由DF切⊙O于F,得到∠DFO=90°,由于DC⊥AB,得到∠DCO=90°,于是結(jié)論可得;(2)過(guò)E作EM⊥BF于M,由四邊形DCOF是矩形,得到OF=DC=OA,由于OC=CE,推出AC=DE,設(shè)DE=x,則AC=x,在Rt△FOB中,∠FOB=90°,OF=OB,BF=2 ,由勾股定理得:OF=OB=2,則AB=4,BC=4﹣x,由于AC=DE,OCDF=CE,由勾股定理得:AE=EF,通過(guò)Rt△ECA≌Rt△EMF,得出AC=MF=DE=x,在Rt△ECB和Rt△EMB中,由勾股定理得:BC=BM,問(wèn)題可得.
          【考點(diǎn)精析】通過(guò)靈活運(yùn)用切線的性質(zhì)定理,掌握切線的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過(guò)切點(diǎn)垂直于切線的直線必經(jīng)過(guò)圓心3、圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑即可以解答此題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,AB是O的直徑,AE交O于點(diǎn)E,且與O的切線CD互相垂直,垂足為D.
          (1)求證:∠EAC=∠CAB;
          (2)若CD=4,AD=8:①求O的半徑;②求tan∠BAE的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】南沙群島是我國(guó)固有領(lǐng)土,現(xiàn)在我南海漁民要在南沙某海島附近進(jìn)行捕魚(yú)作業(yè),當(dāng)漁船航行至B處時(shí),測(cè)得該島位于正北方向20(1+ )海里的C處,為了防止某國(guó)海巡警干擾,就請(qǐng)求我A處的漁監(jiān)船前往C處護(hù)航,已知C位于A處的北偏東45°方向上,A位于B的北偏西30°的方向上,求A、C之間的距離.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在密碼學(xué)中,直接可以看到內(nèi)容為明碼,對(duì)明碼進(jìn)行某種處理后得到的內(nèi)容為密碼.有一種密碼,將英文的26個(gè)字母a、b、c,…,z依次對(duì)應(yīng)1、2、3,…,26這26個(gè)自然數(shù)(見(jiàn)表格),當(dāng)明碼對(duì)應(yīng)的序號(hào)x為奇數(shù)時(shí),密碼對(duì)應(yīng)的序號(hào) ;當(dāng)明碼對(duì)應(yīng)的序號(hào)x為偶數(shù)時(shí),密碼對(duì)應(yīng)的序號(hào)

          字母

          a

          b

          c

          d

          e

          f

          g

          h

          i

          j

          k

          l

          m

          序號(hào)

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          11

          12

          13

          字母

          n

          o

          p

          q

          r

          s

          t

          u

          v

          w

          x

          y

          z

          序號(hào)

          14

          15

          16

          17

          18

          19

          20

          21

          22

          23

          24

          25

          26

          按上述規(guī)定,將明碼“bird”譯成密碼是( )
          A.bird
          B.nove
          C.sdri
          D.nevo

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,拋物線 y=ax2+bx+ca≠0)經(jīng)過(guò)點(diǎn)A(-3,0)、B(1,0)、C(-2,1),交y軸于點(diǎn)M.
          (1)求拋物線的表達(dá)式;
          (2)D為拋物線在第二象限部分上的一點(diǎn),作DE垂直x軸于點(diǎn)E,交線段AM于點(diǎn)F,求線段DF長(zhǎng)度的最大值,并求此時(shí)點(diǎn)D的坐標(biāo);
          (3)拋物線上是否存在一點(diǎn)P,作PN垂直x軸于點(diǎn)N,使得以點(diǎn)P、A.N為頂點(diǎn)的三角形與△MAO相似?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在一堂關(guān)于“折紙問(wèn)題”的數(shù)學(xué)綜合實(shí)踐探究課中,小明同學(xué)將一張矩形ABCD紙片,按如圖進(jìn)行折疊,分別在BC、AD兩邊上取兩點(diǎn)E,F(xiàn),使CE=AF,分別以DE,BF為對(duì)稱軸將△CDE與△ABF翻折得到△C′DE與△A′BF,且邊C′E與A′B交于點(diǎn)G,邊A′F與C′D交于一點(diǎn)H.已知tan∠EBG= ,A′G=6,C′G=1,則矩形紙片ABCD的周長(zhǎng)為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知,如圖①,在Rt△ACB中,∠ACB=90°,AC=3,BC=4,點(diǎn)P為線段BC上的一動(dòng)點(diǎn)(不運(yùn)動(dòng)到C,B兩點(diǎn))過(guò)點(diǎn)P作PQ⊥BC交AB于點(diǎn)Q,在AC邊上取一點(diǎn)D,使QD=QP,連結(jié)DP,設(shè)CP=x

          (1)求QP的長(zhǎng),用含x的代數(shù)式表示.
          (2)當(dāng)x為何值時(shí),△DPQ為直角三角形?
          (3)記點(diǎn)D關(guān)于直線PQ的對(duì)稱點(diǎn)為點(diǎn)D′.
          ①當(dāng)點(diǎn)D′落在AB邊上時(shí),求x的值;
          ②在①的條件下,如圖②,將此時(shí)的△DPQ繞點(diǎn)P順時(shí)針旋轉(zhuǎn)一個(gè)角度α(0°<α<∠DPB),在旋轉(zhuǎn)過(guò)程中,設(shè)DP所在的直線與直線AB交于點(diǎn)M,與直線AC交于點(diǎn)N,是否存在這樣的M,N兩點(diǎn),使△AMN為等腰三角形?若存在,求出此時(shí)AN的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知E、F分別是ABCD的邊BC、AD上的點(diǎn),且BE=DF.

          (1)求證:四邊形AECF是平行四邊形;
          (2)若四邊形AECF是菱形,且BC=10,∠BAC=90°,求BE的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】2016年3月,成都市某區(qū)一周天氣質(zhì)量報(bào)告中某項(xiàng)污染指標(biāo)的數(shù)據(jù)是:60,60,100,90,90,70,90,則下列關(guān)于這組數(shù)據(jù)表述正確的是(
          A.眾數(shù)是60
          B.中位數(shù)是100
          C.平均數(shù)是78
          D.極差是40

          查看答案和解析>>

          同步練習(xí)冊(cè)答案