【題目】如圖,是
的直徑,
是
的弦,延長(zhǎng)
到點(diǎn)
,使
,連結(jié)
,過(guò)點(diǎn)
作
,垂足為
,交
的延長(zhǎng)線于點(diǎn)
.
求證:
為
的切線;
猜想線段
、
、
之間的數(shù)量關(guān)系,并證明你的猜想;
若
,
,求線段
的長(zhǎng).
【答案】(1)證明見解析;(2).理由見解析;(3)
.
【解析】
(1)連接OD,由AO=BO,BD=DC,可判斷OD為△BAC的中位線,則OD∥AC,由于EF⊥AC,則EF⊥OD,于是可根據(jù)切線的判定定理得到EF為⊙O的切線;
(2)連結(jié)AD,根據(jù)圓周角定理得∠ADB=90°,而BD=CD,根據(jù)等腰三角形的判定得AB=AC,再根據(jù)等角的余角相等得到∠DAB=∠BDF,則可判斷△FBD∽△FDA,得到DF:AF=BF:DF,理由比例性質(zhì)得DF2=BFFA=BF(BF+AB),所以DF2=BF2+BFAC;
(3)先得到OD=,AB=AC=5.在Rt△ACD中,由正切的定義得到AD=2CD,再根據(jù)勾股定理可解得CD=
.在Rt△ECD中,同樣可求得CE=1,則DE=2,AE=AC﹣CE=4,然后根據(jù)△FOD∽△FAE,利用相似比可求出EF的長(zhǎng).
(1)連接OD,如圖,∵AO=BO,BD=DC,∴OD∥AC.
∵EF⊥AC,∴EF⊥OD.
∵OD為半徑,∴EF為⊙O的切線;
(2)DF2=BF2+BFAC.理由如下:
連結(jié)AD,如圖,∵AB為⊙O的直徑,∴∠ADB=90°,而BD=CD,∴AB=AC,∠DAB+∠ABD=90°.
∵OD⊥DF,∴∠ODB+∠BDF=90°,而OD=OB,∴∠ODB=∠OBD,∴∠DAB=∠BDF,而∠BFD=∠DFA,∴△FBD∽△FDA,∴DF:AF=BF:DF,∴DF2=BFFA,∴DF2=BF(BF+AB)
∴DF2=BF2+BFAC;
(3)∵AO=,∴OD=
,AB=AC=5.在Rt△ACD中,tanC=
=2,∴AD=2CD.
∵AD2+CD2=AC2,∴4CD2+CD2=52,解得:CD=Rt△ECD中,tanC=
=2,∴DE=2CE.
∵DE2+CE2=CD2,∴4CE2+CE2=5,解得:CE=1,∴DE=2,AE=AC﹣CE=4.
∵OD∥AE,∴△FOD∽△FAE,∴=
,即
=
,∴EF=
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC為等邊三角形,AE=CD,AD,BE相交于點(diǎn)P,BQ⊥AD于點(diǎn)Q,PQ=3,PE=1.
(1)求證:∠ABE=∠CAD;
(2)求BP和AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知為等邊三角形,點(diǎn)
由點(diǎn)
出發(fā),在
延長(zhǎng)線上運(yùn)動(dòng),連接
,以
為邊作等邊三角形
,連接
.
(1)證明:;
(2)若,點(diǎn)
的運(yùn)動(dòng)速度為每秒
,運(yùn)動(dòng)時(shí)間為
秒,則
為何值時(shí),
?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,長(zhǎng)方形的邊
,
分別在
軸,
軸上,點(diǎn)
在邊
上,將該長(zhǎng)方形沿
折疊,點(diǎn)
恰好落在邊
上的點(diǎn)
處,若
,
,則
所在直線的表達(dá)式為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,
,以
為直徑的
與
邊交于點(diǎn)
,過(guò)點(diǎn)
作
交
于點(diǎn)
,連接
.
求證:
是
的切線;
若
的半徑為
,
,求
的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O外一點(diǎn),AB=AC,連接BC,交⊙O于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC,垂足為E.
(1)求證:DE與⊙O相切.
(2)若∠B=30°,AB=4,則圖中陰影部分的面積是 (結(jié)果保留根號(hào)和π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=60°,OA=OB,動(dòng)點(diǎn)C從點(diǎn)O出發(fā),沿射線OB方向移動(dòng),以AC為邊在右側(cè)作等邊△ACD,連接BD,則BD所在直線與OA所在直線的位置關(guān)系是( 。
A. 平行 B. 相交 C. 垂直 D. 平行、相交或垂直
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC 中,AD 是 BC 邊上的高,且∠ACB=∠BAD,AE 平分∠CAD,交 BC于點(diǎn) E,過(guò)點(diǎn) E 作 EF∥AC,分別交 AB、AD 于點(diǎn) F、G.則下列結(jié)論:①∠BAC=90°;②∠AEF=∠BEF; ③∠BAE=∠BEA; ④∠B=2∠AEF,其中正確的有( )
A. 4 個(gè)B. 3 個(gè)C. 2 個(gè)D. 1 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)是
的角平分線
上一點(diǎn),
于點(diǎn)
,點(diǎn)
是線段
上一點(diǎn).已知
,
,點(diǎn)
為
上一點(diǎn).若滿足
,則
的長(zhǎng)度為( )
A.3B.5C.5和7D.3或7
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com