日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,⊙O1和⊙O2內(nèi)切于點P,且⊙O1過點O2,PB是⊙O2的直徑,A為⊙O2上的點,連接AB,過O1作O1C⊥BA于C,連接CO2.已知PA=數(shù)學(xué)公式,PB=4.
          (1)求證:BA是⊙O1的切線;
          (2)求∠BCO2的正切值.

          (1)證明:∵PB是⊙O2的直徑,A為⊙O2上的點,
          ∴∠PAB=90°.
          又∵O1C⊥BA,
          ∴△PAB∽△O1CB.
          ∵PA=,PB=4,
          ∴01C=1.
          ∴O1C是⊙O1的半徑,
          ∵O1C⊥BA于C,
          ∴BA是⊙O1的切線.

          (2)解:BC==,
          連接PC;
          ∵∠B=∠B,∠BCO2=∠BPC,
          ∴△BPC∽△BCO2
          ∴O2C:CP=BO2:BC=2:=tanBPC=tanBCO2,
          (在Rt△PCO2中,tanBPC=O2C:CP)
          ∴tanBCO2=
          分析:(1)由題意得O1C⊥BA,證得O1C為半徑即可;
          (2)應(yīng)把∠BCO2進行轉(zhuǎn)移,轉(zhuǎn)移到已求得的線段的比值.
          點評:證得直線為切線的條件:到圓心的距離等于半徑,與半徑垂直;要求的三角函數(shù)值需轉(zhuǎn)移到已知的線段的比.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          20、已知:如圖,⊙O1和⊙O2相交于A、B兩點,動點P在⊙O2上,且在⊙1外,直線PA、PB分別交⊙O1于C、D,問:⊙O1的弦CD的長是否隨點P的運動而發(fā)生變化?如果發(fā)生變化,請你確定CD最長和最短時P的位置,如果不發(fā)生變化,請你給出證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,⊙O1和⊙O2相交于A、B兩點,過B點作⊙O1的切線交⊙O2于D點,連接DA并延精英家教網(wǎng)長⊙O1相交于C點,連接BC,過A點作AE∥BC與⊙O相交于E點,與BD相交于F點.
          (1)求證:EF•BC=DE•AC;
          (2)若AD=3,AC=1,AF=
          3
          ,求EF的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,⊙O1和⊙O2相交于A、B兩點,⊙O1的弦AC與⊙O2相切,P是
          AmC
          的中點,PA精英家教網(wǎng)、PB的延長線分別交⊙O2于點E、F,PB交AC于D.
          (1)求證:PC∥AF;
          (2)求證:AE•PC=BE•PD;
          (3)若A是PE的中點,則⊙O1與⊙O2是否是等圓?若不是等圓,請說明理由;若是等圓,請給出證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          16、如圖.⊙O1和⊙O2外切于點A,BC是⊙O1和⊙O2的公切線,B、C為切點,求證:AB⊥AC.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2001•黃岡)已知,如圖,⊙O1和⊙O2內(nèi)切于點P,過點P的直線交⊙O1于點D,交⊙O2于點E;DA與⊙O2相切,切點為C.
          (1)求證:PC平分∠APD;
          (2)PE=3,PA=6,求PC的長.

          查看答案和解析>>

          同步練習(xí)冊答案