日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知一次函數(shù)y=
          3
          x+m(O<m≤1)的圖象為直線l,直線l繞原點(diǎn)O旋轉(zhuǎn)180°后得直線l′,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-
          3
          ,-1)、B(
          3
          ,-1)、C(O,2).
          (1)求直線l′的解析式(可以含m);
          (2)如圖,l、l′分別與△ABC的兩邊交于E、F、G、H,四邊形EFGH的面積記為S,試求m與S的關(guān)系式,并求S的變化范圍;
          (3)若m=1,當(dāng)△ABC分別沿直線y=x與y=
          3
          x平移時(shí),判斷△ABC介于直線l,l′之間部分的面積是否改變?若不變請(qǐng)指出來;若改變請(qǐng)直接寫出面積變化的范圍.(本小題不必說明理由)
          分析:(1)先在直線l上取兩點(diǎn),再分別得出這兩點(diǎn)繞原點(diǎn)O旋轉(zhuǎn)180°后的對(duì)應(yīng)點(diǎn),然后運(yùn)用待定系數(shù)法即可求出l′的解析式;
          (2)先運(yùn)用等邊三角形的性質(zhì)求出EF、GH的長度,再根據(jù)梯形的面積公式求解;
          (3)根據(jù)平移的知識(shí)可知:沿y=
          3
          x平移時(shí),面積不變;沿y=x平移時(shí),面積改變,設(shè)其面積為S'.顯然,如果△ABC與l、l′沒有交點(diǎn),則面積S′取最小值0;由于m=1時(shí),△ABC介于直線l,l′之間的部分是一個(gè)梯形,l與l′之間的距離是1,即梯形的高是1,則當(dāng)EF+GH取最大值時(shí),S′有最大值,此時(shí)直線l與l′中有一條過點(diǎn)C,且F、G落在△ABC的同一邊上,可求S′=
          5
          3
          3
          ,則0≤S'≤
          5
          3
          3
          解答:解:(1)∵一次函數(shù)y=
          3
          x+m(O<m≤1)與x軸交于點(diǎn)M(-
          3
          3
          m,0),與y軸交于點(diǎn)N(0,m),
          ∴點(diǎn)M、N繞原點(diǎn)O旋轉(zhuǎn)180°后的對(duì)應(yīng)點(diǎn)M′(
          3
          3
          m,0),與y軸交于點(diǎn)N(0,-m),
          由題意,知M′、N′在直線l′上,
          運(yùn)用待定系數(shù)法易得直線l′的解析式為y=
          3
          x
          -m;

          (2)∵A(-
          3
          ,-1)、C(O,2),∴直線AC的解析式為y=
          3
          x+2,
          又∵直線l的解析式為y=
          3
          x+m,直線l′的解析式為y=
          3
          x
          -m,
          ∴l(xiāng)∥l′∥AC.
          ∵A(-
          3
          ,-1)、B(
          3
          ,-1)、C(O,2),
          ∴AB=BC=CA=2
          3
          ,
          ∴△ABC是等邊三角形.
          ∵當(dāng)y=-1時(shí),
          3
          x+m=-1,x=
          -
          3
          -
          3
          m
          3
          ,∴E(
          -
          3
          -
          3
          m
          3
          ,-1),BE=
          3
          -
          -
          3
          -
          3
          m
          3
          =
          4
          3
          +
          3
          m
          3
          ,
          當(dāng)y=-1時(shí),
          3
          x-m=-1,x=
          -
          3
          +
          3
          m
          3
          ,∴H(
          -
          3
          +
          3
          m
          3
          ,-1),BH=
          3
          -
          -
          3
          +
          3
          m
          3
          =
          4
          3
          -
          3
          m
          3

          ∵l∥AC,△ABC是等邊三角形,∴△BEF是等邊三角形,EF=BE=
          4
          3
          +
          3
          m
          3
          ,
          同理,HG=BH=
          4
          3
          -
          3
          m
          3

          過點(diǎn)O作OD⊥MN于D,則2OD是梯形EFGH的高.
          ∵點(diǎn)M(-
          3
          3
          m,0),點(diǎn)N(0,m),∴MN=
          2
          3
          m
          3

          在△OMN中,由面積公式,得OD=
          OM•ON
          MN
          =
          1
          2
          m,∴2OD=m,
          ∴梯形EFGH的面積S=
          1
          2
          (EF+GH)•2OD=
          1
          2
          m(
          4
          3
          +
          3
          m
          3
          +
          4
          3
          -
          3
          m
          3
          )=
          4
          3
          3
          m
          ,
          4
          3
          3
          >0,
          ∴S隨m的增大而增大,
          又∵0<m≤1,
          ∴0<S≤
          4
          3
          3
          ;

          (3)如果△ABC沿直線y=
          3
          x平移,由平移的知識(shí)可知面積不變;
          如果△ABC沿直線y=x平移,面積改變,設(shè)其面積為S',
          易知S′最小值為0,S′取最大值時(shí),直線l與l′中有一條過點(diǎn)C,且F、G落在△ABC的同一邊上,
          如圖所示,此時(shí)求得S'=
          5
          3
          3

          則0≤S'≤
          5
          3
          3
          點(diǎn)評(píng):此題主要考查了函數(shù)和幾何圖形的綜合運(yùn)用.解題的關(guān)鍵是會(huì)靈活的利用平移的性質(zhì)和特點(diǎn)再結(jié)合具體圖形的性質(zhì)求解.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          18、已知一次函數(shù)y=-3x+1的圖象經(jīng)過點(diǎn)(a,1)和點(diǎn)(-2,b),則a=
          0
          ,b=
          7

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知一次函數(shù)y=3x+6,則坐標(biāo)原點(diǎn)O到此直線的距離是
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          14、已知一次函數(shù)y=-3x+n的圖象經(jīng)過(-2,5),則在這個(gè)函數(shù)圖象上的點(diǎn)是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知一次函數(shù)y=3x-m和反比例函數(shù)y=
          m-3
          x
          ,當(dāng)y=
          1
          3
          時(shí),自變量的值相等,求反比例函數(shù)的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知一次函數(shù)y=
          3
          x-2的圖象經(jīng)過(a,b),(a+1,b+k)兩點(diǎn),并且與反比例函數(shù)y=
          k
          x
          的圖象交于第一象限內(nèi)一點(diǎn)A.
          (1)求反比例函數(shù)的解析式;
          (2)求點(diǎn)A的坐標(biāo);
          (3)若射線OA與x軸的夾角為30°請(qǐng)問:在x軸上是否存在點(diǎn)P,使△AOP為等腰三角形?若存在,直接寫出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案