日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 作業(yè)寶已知,如圖1:四邊形ABCD中,AB=CD,AD=BC,試回答下列問題:
          (1)說明:∠A=∠C;
          (2)如圖2若E、F分別在AB、CD上且AE=CF,請(qǐng)你以F為一個(gè)端點(diǎn),和圖中已標(biāo)明字母的某點(diǎn)連接成一條新段,猜想并說明它與圖中哪條已知線段相等(只需說明一組)
          ①我連接______,并猜想______=______.
          ②理由:
          (3)若E、F分別在AB、CD上且DE=BF,此時(shí)AE=CF成立嗎?若成立,說明理由,若不成立,也說明理由或畫出示意圖.

          解:(1)∵AB=CD,AD=BC,
          ∴四邊形ABCD是平行四邊形.
          ∴∠A=∠C.

          (2)連接BF,并猜想DE=BF.
          ∵AE=CF,∠A=∠C,AD=BC,
          ∴△ADE≌△BCF,
          ∴DE=BF.

          (3)成立.

          從圖上可以看出在DC上可找到兩點(diǎn)F和G分別和B連接得到的BG,BF都和DE相等.
          分析:(1)兩組對(duì)邊相等的四邊形是平行四邊形,平行四邊形的對(duì)角相等.
          (2)平行四邊形的對(duì)邊相等,對(duì)角相等,可證明三角形全等.
          (3)可看看能不能證明三角形全等,從而可看出線段是否相等.
          點(diǎn)評(píng):本題考查平行四邊形的判定定理和性質(zhì)定理,以及全等三角形的判定和性質(zhì).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          21、已知:如圖在平行四邊形ABCD中,過對(duì)角線BD的中點(diǎn)O作直線EF分別交DA的延長(zhǎng)線、AB、DC、BC的延長(zhǎng)線于點(diǎn)E、M、N、F.
          (1)觀察圖形并找出一對(duì)全等三角形:△
          ≌△
          ,請(qǐng)加以證明;
          (2)在(1)中你所找出的一對(duì)全等三角形,其中一個(gè)三角形可由另一個(gè)三角形經(jīng)過怎樣的變換得到?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知:如圖,平行四邊形ABCD中,E、F分別為AB、CD上的點(diǎn),且AE=CF,EF與BD交于點(diǎn)O.
          求證:OE=OF.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2008•順義區(qū)二模)已知:如圖,平行四邊形ABCD中,AE、BE、CF、DF分別平分∠BAD、∠ABC、∠BCD、∠CDA,BE、DF的延長(zhǎng)線分別交AD、BC于點(diǎn)M、N,連接EF,若AD=7,AB=4,求EF的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,在四邊形ABCD中,BC<DC,∠BCD=60°,∠ADC=45°,CA平分∠BCD,AB=AD=2
          2
          ,求四邊形ABCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,在四邊形ABCD中,AC平分∠BAD,CE⊥AB于E,且∠B+∠D=180°,求證:AE=AD+BE.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案