日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在四邊形ABFC中,∠ACB=90°,BC的垂直平分線EF交BC于點(diǎn)D,交AB于點(diǎn)E,且CF=AE.

          (1)試探究,四邊形BECF是什么特殊的四邊形;

          (2)當(dāng)∠A的大小滿足什么條件時(shí),四邊形BECF是正方形?請(qǐng)回答并證明你的結(jié)論.(特別提醒:表示角最好用數(shù)字)

          答案:
          解析:

            解:(1)四邊形BECF是菱形.

            證明:因?yàn)镋F垂直平分BC,

            所以BF=FC,BE=EC.

            所以∠1=∠2.

            因?yàn)椤螦CB=90°,

            所以∠1+∠4=90°,∠3+∠2=90°.

            所以∠3=∠4.

            所以EC=AE.

            所以BE=AE.

            因?yàn)镃F=AE,

            所以BE=EC=CF=BF.

            所以四邊形BECF是菱形.

            (2)當(dāng)∠A=45°時(shí),菱形BECF是正方形.

            證明:因?yàn)椤螦=45°,∠ACB=90°,

            所以∠1=45°.

            所以∠EBF=2∠A=90°.

            所以菱形BECF是正方形.


          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          探究問(wèn)題:
          (1)方法感悟:
          如圖①,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
          感悟解題方法,并完成下列填空:
          將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG,此時(shí)AB與AD重合,由旋轉(zhuǎn)可得:
          AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
          ∴∠ABG+∠ABF=90°+90°=180°,
          因此,點(diǎn)G,B,F(xiàn)在同一條直線上.
          ∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
          ∵∠1=∠2,∴∠1+∠3=45°.
          即∠GAF=∠
           

          又AG=AE,AF=AF
          ∴△GAF≌
           

           
          =EF,故DE+BF=EF.
          (2)方法遷移:
          如圖②,將Rt△ABC沿斜邊翻折得到△ADC,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且∠EAF=
          1
          2
          ∠DAB.試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想.
          (3)問(wèn)題拓展:
          如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點(diǎn),滿足∠EAF=
          1
          2
          ∠DAB,試猜想當(dāng)∠B與∠D滿足什么關(guān)系時(shí),可使得DE+BF=EF.請(qǐng)直接寫出你的猜想(不必說(shuō)明理由).
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知:如圖,在四邊形ABCD中,∠ABC=90°,DE⊥AC于點(diǎn)F,交AB的延長(zhǎng)線于點(diǎn)E,且AE=AC.(1)試說(shuō)明:△ABF是等腰三角形;
          (2)若AD=DC,試說(shuō)明:AC=2AB.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (11·永州)(本題滿分10分)探究問(wèn)題:

          ⑴方法感悟:

          如圖①,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.

          感悟解題方法,并完成下列填空:

          將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG,此時(shí)AB與AD重合,由旋轉(zhuǎn)可得:

          AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,

          ∴∠ABG+∠ABF=90°+90°=180°,

          因此,點(diǎn)G,B,F(xiàn)在同一條直線上.

          ∵∠EAF=45°  ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.

          ∵∠1=∠2,   ∴∠1+∠3=45°.

          即∠GAF=∠_________.

          又AG=AE,AF=AF

          ∴△GAF≌_______.

          ∴_________=EF,故DE+BF=EF.

          ⑵方法遷移:

          如圖②,將沿斜邊翻折得到△ADC,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想.

          ⑶問(wèn)題拓展:

          如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點(diǎn),滿足,試猜想當(dāng)∠B與∠D滿足什么關(guān)系時(shí),可使得DE+BF=EF.請(qǐng)直接寫出你的猜想(不必說(shuō)明理由).

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年度臨沂市費(fèi)縣七年級(jí)第二學(xué)期期末檢測(cè)數(shù)學(xué) 題型:解答題

          (11·永州)(本題滿分10分)探究問(wèn)題:
          ⑴方法感悟:
          如圖①,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
          感悟解題方法,并完成下列填空:
          將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG,此時(shí)AB與AD重合,由旋轉(zhuǎn)可得:
          AB="AD,BG=DE," ∠1=∠2,∠ABG=∠D=90°,
          ∴∠ABG+∠ABF=90°+90°=180°,
          因此,點(diǎn)G,B,F(xiàn)在同一條直線上.
          ∵∠EAF="45° " ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
          ∵∠1=∠2,   ∴∠1+∠3=45°.
          即∠GAF=∠_________.
          又AG=AE,AF=AF
          ∴△GAF≌_______.
          ∴_________=EF,故DE+BF=EF.

          ⑵方法遷移:
          如圖②,將沿斜邊翻折得到△ADC,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想.

          ⑶問(wèn)題拓展:
          如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點(diǎn),滿足,試猜想當(dāng)∠B與∠D滿足什么關(guān)系時(shí),可使得DE+BF=EF.請(qǐng)直接寫出你的猜想(不必說(shuō)明理由).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2013屆度臨沂市費(fèi)縣七年級(jí)第二學(xué)期期末檢測(cè)數(shù)學(xué) 題型:解答題

          (11·永州)(本題滿分10分)探究問(wèn)題:

          ⑴方法感悟:

          如圖①,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.

          感悟解題方法,并完成下列填空:

          將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG,此時(shí)AB與AD重合,由旋轉(zhuǎn)可得:

          AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,

          ∴∠ABG+∠ABF=90°+90°=180°,

          因此,點(diǎn)G,B,F(xiàn)在同一條直線上.

          ∵∠EAF=45°  ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.

          ∵∠1=∠2,   ∴∠1+∠3=45°.

          即∠GAF=∠_________.

          又AG=AE,AF=AF

          ∴△GAF≌_______.

          ∴_________=EF,故DE+BF=EF.

          ⑵方法遷移:

          如圖②,將沿斜邊翻折得到△ADC,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想.

          ⑶問(wèn)題拓展:

          如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點(diǎn),滿足,試猜想當(dāng)∠B與∠D滿足什么關(guān)系時(shí),可使得DE+BF=EF.請(qǐng)直接寫出你的猜想(不必說(shuō)明理由).

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案