日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1,拋物線經(jīng)過A(-1,0),C(3,2)兩點,與軸交于點D,與軸交于另一點B。

          ⑴求此拋物線的解析式;

          ⑵若直線將四邊形ABCD面積二等分,求的值;

          ⑶如圖2,過點E(1,-1)作EF⊥軸于點F,將△AEF繞平面內(nèi)某點旋轉(zhuǎn)180°后得△MNQ(點M,N,Q分別與點A,E,F(xiàn)對應(yīng)),使點M,N在拋物線上,求點M,N的坐標(biāo).

          ;⑵;⑶M(3,2),N(1,3)

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)系中放置一直角三角板,其頂點為A(-1,0),B(0,
          3
          ),精英家教網(wǎng)O(0,0),將此三角板繞原點O順時針旋轉(zhuǎn)90°,得到△A′B′O.
          (1)如圖,一拋物線經(jīng)過點A,B,B′,求該拋物線解析式;
          (2)設(shè)點P是在第一象限內(nèi)拋物線上一動點,求使四邊形PBAB′的面積達(dá)到最大時點P的坐標(biāo)及面積的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•寶安區(qū)二模)已知:如圖1,拋物線經(jīng)過點O、A、B三點,四邊形OABC是直角梯形,其中點A在x軸上,點C在y軸上,BC∥OA,A(12,0)、B(4,8).
          (1)求拋物線所對應(yīng)的函數(shù)關(guān)系式;
          (2)若D為OA的中點,動點P自A點出發(fā)沿A→B→C→O的路線移動,速度為每秒1個單位,移動時間記為t秒.幾秒鐘后線段PD將梯形OABC的面積分成1﹕3兩部分?并求出此時P點的坐標(biāo);
          (3)如圖2,作△OBC的外接圓O′,點Q是拋物線上點A、B之間的動點,連接OQ交⊙O′于點M,交AB于點N.當(dāng)∠BOQ=45°時,求線段MN的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(32):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

          如圖,在平面直角坐標(biāo)系中放置一直角三角板,其頂點為A(-1,0),B(0,),O(0,0),將此三角板繞原點O順時針旋轉(zhuǎn)90°,得到△A′B′O.
          (1)如圖,一拋物線經(jīng)過點A,B,B′,求該拋物線解析式;
          (2)設(shè)點P是在第一象限內(nèi)拋物線上一動點,求使四邊形PBAB′的面積達(dá)到最大時點P的坐標(biāo)及面積的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2013年安徽省中考數(shù)學(xué)模擬試卷(五)(解析版) 題型:解答題

          如圖,在平面直角坐標(biāo)系中放置一直角三角板,其頂點為A(-1,0),B(0,),O(0,0),將此三角板繞原點O順時針旋轉(zhuǎn)90°,得到△A′B′O.
          (1)如圖,一拋物線經(jīng)過點A,B,B′,求該拋物線解析式;
          (2)設(shè)點P是在第一象限內(nèi)拋物線上一動點,求使四邊形PBAB′的面積達(dá)到最大時點P的坐標(biāo)及面積的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年初中畢業(yè)升學(xué)考試(安徽蕪湖卷)數(shù)學(xué)(解析版) 題型:解答題

          如圖,在平面直角坐標(biāo)系中放置一直角三角板,其頂點為,,將此三角板繞原點順時針旋轉(zhuǎn),得到

          (1)如圖,一拋物線經(jīng)過點,求該拋物線解析式;

          (2)設(shè)點是在第一象限內(nèi)拋物線上一動點,求使四邊形的面積達(dá)到最大時點的坐標(biāo)及面積的最大值.

           

          查看答案和解析>>

          同步練習(xí)冊答案