日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知,如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),AD垂直于經(jīng)過點(diǎn)C的直線DE,垂足為點(diǎn)D,AC平分∠DAB.

          (1)求證:直線DE是⊙O的切線;
          (2)連接BC,猜想:∠ECB與∠CAB的數(shù)量關(guān)系,并證明你的猜想.

          【答案】
          (1)

          證明:連接OC,如圖1所示:

          ∵OA=OC,

          ∴∠BAC=∠ACO,

          ∵AC平分∠DAB,

          ∴∠DAC=∠BAC,

          ∴∠ACO=∠DAC,

          ∴AD∥OC,

          ∵AD⊥DE,

          ∴OC⊥DE,

          ∴直線DE是⊙O的切線;


          (2)

          解:如圖2所示:∠ECB=∠CAB,理由如下:

          ∵AB是⊙O的直徑,

          ∴∠ACB=90°,

          ∴∠CAB+∠B=90°,

          ∵OC⊥DE,

          ∴∠ECB+∠BCO=90°,

          ∵OC=OB,

          ∴∠B=∠BCO,

          ∴∠ECB=∠CAB.


          【解析】(1)連接OC,由等腰三角形的性質(zhì)和已知條件得出∠ACO=∠DAC,證出AD∥OC,再由已知條件得出OC⊥DE,即可得出直線DE是⊙O的切線;(2)由圓周角定理得出∠ACB=90°,得出∠CAB+∠B=90°,得出∠ECB+∠BCO=90°,由等腰三角形的性質(zhì)得出∠B=∠BCO,即可得出結(jié)論.
          【考點(diǎn)精析】根據(jù)題目的已知條件,利用切線的性質(zhì)定理的相關(guān)知識可以得到問題的答案,需要掌握切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點(diǎn)A(﹣3,0)和點(diǎn)B,交y軸于點(diǎn)C(0,3).

          (1)求拋物線的函數(shù)表達(dá)式;
          (2)若點(diǎn)P在拋物線上,且SAOP=4SBOC , 求點(diǎn)P的坐標(biāo);
          (3)如圖b,設(shè)點(diǎn)Q是線段AC上的一動點(diǎn),作DQ⊥x軸,交拋物線于點(diǎn)D,求線段DQ長度的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的圓O經(jīng)過點(diǎn)D,E是⊙O上一點(diǎn),且∠AED=45°.

          (1)判斷CD與⊙O的位置關(guān)系,并說明理由;
          (2)若⊙O半徑為6cm,AE=10cm,求∠ADE的正弦值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】濟(jì)寧市五城同創(chuàng)活動中,一項(xiàng)綠化工程由甲、乙兩工程隊(duì)承擔(dān).已知甲工程隊(duì)單獨(dú)完成這項(xiàng)工作需120天,甲工程隊(duì)單獨(dú)工作30天后,乙工程隊(duì)參與合做,兩隊(duì)又共同工作了36天完成.

          1)求乙工程隊(duì)單獨(dú)完成這項(xiàng)工作需要多少天?

          2)因工期的需要,將此項(xiàng)工程分成兩部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均為正整數(shù),且x<46,y<52,求甲、乙兩隊(duì)各做了多少天?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】甲、乙兩同學(xué)的家與學(xué)校的距離均為3000米.甲同學(xué)先步行600米,然后乘公交車去學(xué)校、乙同學(xué)騎自行車去學(xué)校.已知甲步行速度是乙騎自行車速度的,公交車的速度是乙騎自行車速度的2倍.甲乙兩同學(xué)同時從家發(fā)去學(xué)校,結(jié)果甲同學(xué)比乙同學(xué)早到2分鐘.

          1求乙騎自行車的速度;

          2當(dāng)甲到達(dá)學(xué)校時,乙同學(xué)離學(xué)校還有多遠(yuǎn)?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線y1=﹣ x+2與x軸,y軸分別交于B,C,拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)A,B,C,點(diǎn)A坐標(biāo)為(﹣1,0).

          (1)求拋物線的解析式;
          (2)拋物線的對稱軸與x軸交于點(diǎn)D,連接CD,點(diǎn)P是直線BC上方拋物線上的一動點(diǎn)(不與B,C重合),當(dāng)點(diǎn)P運(yùn)動到何處時,四邊形PCDB的面積最大?求出此時四邊形PCDB面積的最大值和點(diǎn)P坐標(biāo);
          (3)在拋物線上的對稱軸上是否存在一點(diǎn)Q,使△QCD是以CD為腰的等腰三角形?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點(diǎn)A是反比例函數(shù)ym<0)位于第二象限的圖像上的一個動點(diǎn),過點(diǎn)AACx

          軸于點(diǎn)CM為是線段AC的中點(diǎn),過點(diǎn)MAC的垂線,與反比例函數(shù)的圖像及y軸分別交于B

          D兩點(diǎn).順次連接A、BC、D.設(shè)點(diǎn)A的橫坐標(biāo)為n

          (1)求點(diǎn)B的坐標(biāo)(用含有m、n的代數(shù)式表示);

          (2)求證:四邊形ABCD是菱形;

          (3)若△ABM的面積為2,當(dāng)四邊形ABCD是正方形時,求直線AB的函數(shù)表達(dá)式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校八年級一班20名女生某次體育測試的成績統(tǒng)計(jì)如下:

          成績(分)

          60

          70

          80

          90

          100

          人數(shù)(人)

          1

          5

          x

          y

          2

          (1)如果這20名女生體育成績的平均分?jǐn)?shù)是82分,求x、y的值;

          (2)(1)的條件下,設(shè)20名學(xué)生測試成績的眾數(shù)是a,中位數(shù)是b,的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),與y軸交于點(diǎn)C,且OC=OB.

          (1)求此拋物線的解析式;
          (2)若點(diǎn)E為第二象限拋物線上一動點(diǎn),連接BE,CE,求四邊形BOCE面積的最大值,并求出此時點(diǎn)E的坐標(biāo);
          (3)點(diǎn)P在拋物線的對稱軸上,若線段PA繞點(diǎn)P逆時針旋轉(zhuǎn)90°后,點(diǎn)A的對應(yīng)點(diǎn)A′恰好也落在此拋物線上,求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊答案