日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•昆都侖區(qū)一模)如圖,AB為某公司小區(qū)內(nèi)的居民樓,高為18米,為緩解職工住房緊張的狀況,方便小區(qū)內(nèi)居民的生活,該公司決定在這棟居民樓后面蓋一棟新樓(圖中CD),它的一樓是6米高的小區(qū)超市,當(dāng)太陽光與水平線的夾角為30°時.
          (1)如果新樓CD到居民樓AB的距離為15米,問一樓超市以上居民住房的采光是否有影響?請說明理由;
          (2)要使超市的采光不受影響,新樓CD應(yīng)蓋在居民樓AB后面至少多少米的地方?(結(jié)果保留整數(shù),參數(shù)數(shù)據(jù):
          3
          1.732)
          分析:(1)利用三角函數(shù)算出陽光可能照到居民樓的什么高度,和6米進(jìn)行比較.
          (2)超市不受影響,說明30°的陽光應(yīng)照射到樓的底部,根據(jù)新樓的高度和30°的正切值即可計算.
          解答:解:(1)如圖1所示:
          過F點作FE⊥AB于點E,
          ∵EF=15米,∠AFE=30°,
          ∴AE=5
          3
          米,
          ∴EB=FC=(18-5
          3
          )米,
          ∵18-5
          3
          >6
          ∴超市以上的居民住房采光要受影響;

          (2)(2)如圖2所示:若要使超市采光不受影響,則太陽光從A直射到C處.
          ∵AB=18米,∠ACB=30°
          ∴BC=
          AB
          tan30°
          =
          18
          3
          3
          =18
          3
          ≈32米,
          答:若要使超市采光不受影響,兩樓最少應(yīng)相距32米.
          點評:本題考查的是解直角三角形的應(yīng)用,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,利用銳角三角函數(shù)的定義求解是解答此題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•昆都侖區(qū)一模)如圖,在⊙O中,AB=4
          3
          ,AC是⊙O的直徑,AC⊥BD于F,∠A=30°,若用陰影扇形OBD圍成一個圓錐側(cè)面,則這個圓錐的底面半徑是
          4
          3
          4
          3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•昆都侖區(qū)一模)下列判斷正確的有(  )
          ①順次連接對角線互相垂直且相等的四邊形的各邊中點一定構(gòu)成正方形
          ②數(shù)據(jù)5,2,7,1,2,4的中位數(shù)是3,眾數(shù)是2
          ③平行四邊形既是中心對稱圖形,又是軸對稱圖形
          ④Rt△ABC中,∠C=90°,兩直角邊a,b分別是方程的x2-7x+7=0兩個根,則AB邊上的中線長為
          1
          2
          35

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•昆都侖區(qū)一模)若半徑分別為1和3的兩圓有兩個交點,則圓心距d的取值范圍是
          2<d<4
          2<d<4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•昆都侖區(qū)一模)如圖所示,在△ABC中,∠C=90°,AC=BC=4,D是AB的中點,點E、F分別在AC、BC邊上運動(點E不與點A,C重合),且保持AE=CF,連接DE,DF,EF.在此運動變化過程中,有下列結(jié)論:
          ①△DEF是等腰直角三角形
          ②四邊形CEDF不可能為正方形
          ③四邊形CEDF的面積隨點E位置的改變而發(fā)生變化
          ④點C到線段EF的最大距離為
          2

          其中正確的有
          ①④
          ①④
          (填上你認(rèn)為正確結(jié)論的所有序號)

          查看答案和解析>>

          同步練習(xí)冊答案