日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解:設(shè)這個(gè)正多邊形的邊數(shù)為n

          由題意得:

          解得:

          故每一個(gè)內(nèi)角的度數(shù)為:

          答:這個(gè)正多邊形的邊數(shù)為9,每一個(gè)內(nèi)角的度數(shù)為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          (2012•青島模擬)同學(xué)們已經(jīng)認(rèn)識(shí)了很多正多邊形,現(xiàn)以正六邊形為例再介紹與正多邊形相關(guān)的幾個(gè)概念.如正六邊形ABCDEF各邊對(duì)稱軸的交點(diǎn)O,又稱正六邊形的中心,其中OA稱正六邊形的半徑,通常用R表示,∠AOB稱為中心角,顯然.提出問題:正多邊形內(nèi)任意一點(diǎn)到各邊距離之和與這個(gè)正多邊形的半徑R和中心角有什么關(guān)系?
          探索發(fā)現(xiàn):
          (1)為了解決這個(gè)問題,我們不妨從最簡單的正多邊形--正三角形入手.
          如圖①,△ABC是正三角形,半徑OA=R,∠AOB是中心角,P是△ABC內(nèi)任意一點(diǎn),P到△ABC各邊距離分別為h1、h2、h3 ,確定h1+h2+h3的值與△ABC的半徑R及中心角的關(guān)系.
          解:設(shè)△ABC的邊長是a,面積為S,顯然S=
          1
          2
          a(h1+h2+h3
          O為△ABC的中心,連接OA、OB、OC,它們將△ABC分成三個(gè)全等的等腰三角形,過點(diǎn)O作OM⊥AB,垂足為M,Rt△AOM中,易知
          OM=OAcos∠AOM=Rcos
          1
          2
          ∠AOB=Rcos
          1
          2
          ×120°=Rcos60°,
          AM=OAsin∠AOM=Rsin
          1
          2
          ∠AOB=Rsin
          1
          2
          ×120°=Rcos60°
          ∴AB=a=2AM=2Rsin60°
          ∴S△AOB=
          1
          2
          AB×OM=
          1
          2
          ×2Rsin60°•Rcos60°=R2sin60°cos60°
          ∴S△ABC=3S△AOB=3R2sin60°cos60°
          1
          2
          a(h1+h2+h3)=3R2sin60°cos60°
          即:
          1
          2
          ×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
          ∴h1+h2+h3=3Rcos60°
          (2)如圖②,五邊形ABCDE是正五邊形,半徑是R,P是正五邊形ABCDE內(nèi)任意一點(diǎn),P到五邊形ABCDE各邊距離分別為h1、h2、h3、h4、h5,參照(1)的探索過程,確定h1+h2+h3+h4+h5的值與正五邊形ABCDE的半徑R及中心角的關(guān)系.
          (3)類比上述探索過程,直接填寫結(jié)論
          正六邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和 h1+h2+h3+h4+h5+h6=
          6Rcos30°
          6Rcos30°

          正八邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和 h1+h2+h3+h4+h5+h6+h7+h8=
          8Rcos22.5°
          8Rcos22.5°

          正n邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和  h1+h2+…+hn=
          nRcos
          180°
          n
          nRcos
          180°
          n

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          同學(xué)們已經(jīng)認(rèn)識(shí)了很多正多邊形,現(xiàn)以正六邊形為例再介紹與正多邊形相關(guān)的幾個(gè)概念.如正六邊形ABCDEF各邊對(duì)稱軸的交點(diǎn)O,又稱正六邊形的中心,其中OA稱正六邊形的半徑,通常用R表示,∠AOB稱為中心角,顯然.提出問題:正多邊形內(nèi)任意一點(diǎn)到各邊距離之和與這個(gè)正多邊形的半徑R和中心角有什么關(guān)系?
          探索發(fā)現(xiàn):
          (1)為了解決這個(gè)問題,我們不妨從最簡單的正多邊形--正三角形入手.
          如圖①,△ABC是正三角形,半徑OA=R,∠AOB是中心角,P是△ABC內(nèi)任意一點(diǎn),P到△ABC各邊距離分別為h1、h2、h3 ,確定h1+h2+h3的值與△ABC的半徑R及中心角的關(guān)系.
          解:設(shè)△ABC的邊長是a,面積為S,顯然S=數(shù)學(xué)公式a(h1+h2+h3
          O為△ABC的中心,連接OA、OB、OC,它們將△ABC分成三個(gè)全等的等腰三角形,過點(diǎn)O作OM⊥AB,垂足為M,Rt△AOM中,易知
          OM=OAcos∠AOM=Rcos數(shù)學(xué)公式∠AOB=Rcos數(shù)學(xué)公式×120°=Rcos60°,
          AM=OAsin∠AOM=Rsin數(shù)學(xué)公式∠AOB=Rsin數(shù)學(xué)公式×120°=Rcos60°
          ∴AB=a=2AM=2Rsin60°
          ∴S△AOB=數(shù)學(xué)公式AB×OM=數(shù)學(xué)公式×2Rsin60°•Rcos60°=R2sin60°cos60°
          ∴S△ABC=3S△AOB=3R2sin60°cos60°
          數(shù)學(xué)公式a(h1+h2+h3)=3R2sin60°cos60°
          即:數(shù)學(xué)公式×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
          ∴h1+h2+h3=3Rcos60°
          (2)如圖②,五邊形ABCDE是正五邊形,半徑是R,P是正五邊形ABCDE內(nèi)任意一點(diǎn),P到五邊形ABCDE各邊距離分別為h1、h2、h3、h4、h5,參照(1)的探索過程,確定h1+h2+h3+h4+h5的值與正五邊形ABCDE的半徑R及中心角的關(guān)系.
          (3)類比上述探索過程,直接填寫結(jié)論
          正六邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和 h1+h2+h3+h4+h5+h6=________
          正八邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和 h1+h2+h3+h4+h5+h6+h7+h8=________
          正n邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和 h1+h2+…+hn=________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2012年山東省青島市中考數(shù)學(xué)調(diào)研試卷(解析版) 題型:解答題

          同學(xué)們已經(jīng)認(rèn)識(shí)了很多正多邊形,現(xiàn)以正六邊形為例再介紹與正多邊形相關(guān)的幾個(gè)概念.如正六邊形ABCDEF各邊對(duì)稱軸的交點(diǎn)O,又稱正六邊形的中心,其中OA稱正六邊形的半徑,通常用R表示,∠AOB稱為中心角,顯然.提出問題:正多邊形內(nèi)任意一點(diǎn)到各邊距離之和與這個(gè)正多邊形的半徑R和中心角有什么關(guān)系?
          探索發(fā)現(xiàn):
          (1)為了解決這個(gè)問題,我們不妨從最簡單的正多邊形--正三角形入手.
          如圖①,△ABC是正三角形,半徑OA=R,∠AOB是中心角,P是△ABC內(nèi)任意一點(diǎn),P到△ABC各邊距離分別為h1、h2、h3 ,確定h1+h2+h3的值與△ABC的半徑R及中心角的關(guān)系.
          解:設(shè)△ABC的邊長是a,面積為S,顯然S=a(h1+h2+h3
          O為△ABC的中心,連接OA、OB、OC,它們將△ABC分成三個(gè)全等的等腰三角形,過點(diǎn)O作OM⊥AB,垂足為M,Rt△AOM中,易知
          OM=OAcos∠AOM=Rcos∠AOB=Rcos×120°=Rcos60°,
          AM=OAsin∠AOM=Rsin∠AOB=Rsin×120°=Rcos60°
          ∴AB=a=2AM=2Rsin60°
          ∴S△AOB=AB×OM=×2Rsin60°•Rcos60°=R2sin60°cos60°
          ∴S△ABC=3S△AOB=3R2sin60°cos60°
          a(h1+h2+h3)=3R2sin60°cos60°
          即:×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
          ∴h1+h2+h3=3Rcos60°
          (2)如圖②,五邊形ABCDE是正五邊形,半徑是R,P是正五邊形ABCDE內(nèi)任意一點(diǎn),P到五邊形ABCDE各邊距離分別為h1、h2、h3、h4、h5,參照(1)的探索過程,確定h1+h2+h3+h4+h5的值與正五邊形ABCDE的半徑R及中心角的關(guān)系.
          (3)類比上述探索過程,直接填寫結(jié)論
          正六邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和 h1+h2+h3+h4+h5+h6=______
          正八邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和 h1+h2+h3+h4+h5+h6+h7+h8=______
          正n邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和  h1+h2+…+hn=______.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案