日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解方程:
          (1)x2-2x-1=0.           
          (2)x2+2x-1=0.
          (3)x2+x-1=0.       
          (4)x2+3x-1=0.
          (5)x(x+2)=1.      
          (6)5(x-3)2=125.  
          (7)x2+2=2
          3
          x.        
          (8)3(x2-5)=4x.
          (9)3x2+(x-2)=0.   
          (10)(2x-1)(x+3)=4.
          (11)x2-3x-4=0.      
          (12)x2-3x-18=0.
          分析:(1)利用配方法解方程;
          (2)利用配方法解方程;
          (3)利用公式法解方程;
          (4)利用公式方法解方程;
          (5)利用配方法解方程;
          (6)先兩邊除以5,然后利用直接開平方法解方程;
          (7)先把方程化為一般式,然后利用公式法解方程;
          (8)先把方程化為一般式,然后利用因式分解法解方程;
          (9)先把方程化為一般式,然后利用因式分解法解方程;
          (10)先把方程化為一般式,然后利用因式分解法解方程;
          (11)利用因式分解法解方程;
          (12)利用因式分解法解方程.
          解答:解:(1)x2-2x=1,
          x2-2x+1=2,
          (x-1)2=2,
          x-1=±
          2
          ,
          ∴x1=1+
          2
          ,x2=1-
          2


          (2)x2+2x=1,
          x2+2x+1=2,
          (x+1)2=2,
          x+1=±
          2
          ,
          ∴x1=-1+
          2
          ,x2=-1-
          2


          (3)△=1-4×(-1)=5,
          x=
          -1±
          5
          2
          ,
          ∴x1=
          -1+
          5
          2
          ,x2=
          -1-
          5
          2


          (4)△=9-4×(-1)=13,
          x=
          -3±
          13
          2
          ,
          ∴x1=
          -3+
          13
          2
          ,x2=
          -3-
          13
          2


          (5)x2+2x=1,
          x2+2x+1=2,
          (x+1)2=2,
          x+1=±
          2
          ,
          ∴x1=-1+
          2
          ,x2=-1-
          2


          (6)(x-3)2=25,
          x-3=±5,
          ∴x1=8,x2=-2.

          (7)x2-2
          3
          x+2=0,
          △=12-4×2=4,
          x=
          2
          3
          ±2
          2
          =
          3
          ±1,
          ∴x1=
          3
          +1,x2=
          3
          -1.

          (8)3(x2-5)=4x,
          3x2-4x-15=0,
          (3x+5)(x-3)=0,
          ∴x1=-
          5
          3
          ,x2=3.

          (9)3x2+(x-2)=0,
          3x2+x-2=0  
          (3x-2)(x+1)=0,
          ∴x1=
          2
          3
          ,x2=-1.

          (10)(2x-1)(x+3)=4,
          整理為2x2+5x-7=0,
          (2x+7)(x-1)=0,
          ∴x1=-
          7
          2
          ,x2=-1.

          (11)x2-3x-4=0,
          (x-4)(x+1)=0,
          ∴x1=4,x2=-1.

          (12)x2-3x-18=0,
          (x+3)(x-6)=0,
          ∴x1=-3,x2=6.
          點(diǎn)評(píng):本題考查了解一元二次方程-因式分解法:先把方程右邊變形為0,再把方程左邊分解為兩個(gè)一次式的乘積,這樣原方程轉(zhuǎn)化為兩個(gè)一元一次方程,然后解一次方程即可得到一元二次方程的解.也考查了配方法、公式法解一元二次方程.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          解方程:
          (1)x2-2x=0
          (2)x(2x-7)=-3
          (3)x2-2x-3=0(用配方法)
          (4)(x-2)2=(2x+3)2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          解方程:
          (1)x2-2
          5
          x+2=0;                   
          (2)3x2-7x+4=0.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (1)解方程:
          1
          x-2
          =
          1-x
          2-x
          -3
          ;
          (2)解方程組:
          x+3y=-1
          3x-2y=8

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          解方程:(1)x2+x-1=0   (2)(x+1)(x-1)=2
          2
          x

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          解方程:
          (1)x2-6x+9=(5-2x)2
          (2)2y2+8y-1=0(用配方法).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案