日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:如圖,拋物線數(shù)學公式的圖象與x軸分別交于A,B兩點,與y軸交于C點,⊙M經(jīng)過原點O及點A,C,點D是劣弧OA上一動點(D點與A,O不重合),直線AG切⊙M點A.
          (1)求拋物線的頂點E的坐標;
          (2)求直線AG的函數(shù)解析式;
          (3)點D為弧AO的中點,CD交AO于點F,延長CD交AG于點G,求FG的長.

          解:(1)拋物線y=-x2-
          =-(x2+2x+1)+
          =-(x+1)2+
          ∴E的坐標為(-1,);

          (2)連AC,延長AG交y軸于點H;
          ∵⊙M過A,O,C,且∠AOC=90°,
          ∴AC為⊙O的直徑.當x=0時,y=
          ∴OC=
          當y=0時,x1=-3,x2=1
          ∴OA=3,由勾股定理得;
          ∴AC=2
          ∵AG是⊙M的切線
          ∴∠CAG=90°
          ∴△CAH為直角三角形.
          ∴△AOC∽△HOA

          ∴OH=3
          ∴H(0,-3
          設AG的解析式為:y=kx+b,由題意得
          解得:

          ∴AG的解析式為:

          (3)在Rt△ACO中,OA=3,OC=,
          ∵tan∠ACO=
          ∴∠ACO=60°,∠CAO=30°.
          ∵點D是 的中點,

          ∴∠ACG=∠DCO=30°.
          ∴OF=OC•tan30°=1,∠CFO=60°.
          ∴AF=2,∠AFG=∠CFO=60°,
          ∵AG是⊙M的切線
          ∴∠CAG=90°
          ∴∠FAG=60°
          ∠FAG=∠AFG=60°
          ∴△AGF為等邊三角形.
          ∴AG=AF=FG.
          ∴FG=2.
          分析:(1)已知拋物線的解析式,用配方法和公式法求都可以求解;
          (2)∵AG是一條直線,利用切線的性質(zhì)和三角形相似求出與y軸的交點坐標,就可以利用待定系數(shù)法求出直線的解析式;
          (3)利用弧中點的定義和圓切線的性質(zhì)求出三角形AFG為正三角形,以及通過解直角三角形求出AF的長而求出FG的長.
          點評:本題是一道二次函數(shù)綜合試題,將拋物線與圓放在同一坐標系中研究,因此數(shù)形結(jié)合的解題思想是不可缺少的,本題考查了相似三角形,切線的性質(zhì),待定系數(shù)法求函數(shù)的解析式,正三角形性質(zhì)的運用.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          已知:如圖,拋物線的頂點為點D,與y軸相交于點A,直線y=ax+3與y軸也交于點A,矩形ABCO的頂點B在精英家教網(wǎng)此拋物線上,矩形面積為12,
          (1)求該拋物線的對稱軸;
          (2)⊙P是經(jīng)過A、B兩點的一個動圓,當⊙P與y軸相交,且在y軸上兩交點的距離為4時,求圓心P的坐標;
          (3)若線段DO與AB交于點E,以點D、A、E為頂點的三角形是否有可能與以點D、O、A為頂點的三角形相似,如果有可能,請求出點D坐標及拋物線解析式;如果不可能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2013•峨眉山市二模)已知,如圖,拋物線的頂點為C(1,-2),直線y=kx+m與拋物線交于A、B兩點,其中OA=3,B點在y軸上.點P為線段AB上的一個動點(點P與點A、B不重合),過點P且垂直于x軸的直線與這條拋物線交于點E.
          (1)求直線AB的解析式;
          (2)設點P的橫坐標為x,求點E坐標(用含x的代數(shù)式表示);
          (3)點D是直線AB與這條拋物線對稱軸的交點,是否存在點P,使得以點P、E、D為頂點的三角形與△AOB相似?若存在,請求出點P的坐標;若不存在請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          已知,如圖,拋物線的頂點為C(1,-2),直線y=kx+m與拋物線交于A、B兩點,其中OA=3,B點在y軸上.點P為線段AB上的一個動點(點P與點A、B不重合),過點P且垂直于x軸的直線與這條拋物線交于點E.
          (1)求直線AB的解析式;
          (2)設點P的橫坐標為x,求點E坐標(用含x的代數(shù)式表示);
          (3)點D是直線AB與這條拋物線對稱軸的交點,是否存在點P,使得以點P、E、D為頂點的三角形與△AOB相似?若存在,請求出點P的坐標;若不存在請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2010-2011學年浙江省麗水市實驗學校九年級(上)第四次月考數(shù)學試卷(解析版) 題型:解答題

          已知:如圖,拋物線的圖象與x軸分別交于A,B兩點,與y軸交于C點,⊙M經(jīng)過原點O及點A,C,點D是劣弧OA上一動點(D點與A,O不重合),直線AG切⊙M點A.
          (1)求拋物線的頂點E的坐標;
          (2)求直線AG的函數(shù)解析式;
          (3)點D為弧AO的中點,CD交AO于點F,延長CD交AG于點G,求FG的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2010年上海市閘北區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

          (2010•閘北區(qū)二模)已知:如圖,拋物線的頂點為點D,與y軸相交于點A,直線y=ax+3與y軸也交于點A,矩形ABCO的頂點B在此拋物線上,矩形面積為12,
          (1)求該拋物線的對稱軸;
          (2)⊙P是經(jīng)過A、B兩點的一個動圓,當⊙P與y軸相交,且在y軸上兩交點的距離為4時,求圓心P的坐標;
          (3)若線段DO與AB交于點E,以點D、A、E為頂點的三角形是否有可能與以點D、O、A為頂點的三角形相似,如果有可能,請求出點D坐標及拋物線解析式;如果不可能,請說明理由.

          查看答案和解析>>

          同步練習冊答案