日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1,四邊形ABCD是正方形,G是CD邊上的一個動點(點G與C、D不重合),以CG為一邊在正方形ABCD外作正方形CEFG,連接BG,DE.我們探究下列圖中線段BG、線段DE的長度關(guān)系及所在直線的位置關(guān)系:
          (1)①猜想如圖1中線段BG、線段DE的長度關(guān)系及所在直線的位置關(guān)系;
          ②將圖1中的正方形CEFG繞著點C按順時針(或逆時針)方向旋轉(zhuǎn)任意角度α,得到如圖2、如圖3情形.請你判斷①中得到的結(jié)論是否仍然成立,并選取圖2證明你的判斷.
          (2)將原題中正方形改為矩形(如圖6),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)題①中得到的結(jié)論哪些成立,哪些不成立?若成立,以圖5為例簡要說明理由.
          分析:(1)①延長BG交DE于O,根據(jù)正方形性質(zhì)推出BC=CD=AB,CG=CE,∠BCD=∠ECD=90°,證△BCG≌△DCE,推出BG=DE,∠CBG=∠CDE,求出∠CDE+∠DGO=90°,求出∠DOG=90°即可;②求出∠BCG=∠DCE,證△BCG≌△DCE,推出BG=DE,∠CBG=∠CDE,求出∠CDE+∠DGO=90°,求出∠DOG=90°即可;
          (2)求出
          BC
          CD
          =
          CG
          CE
          =
          b
          a
          ,加上∠BCG=∠DCE,證△BCG∽△DCE,得出
          BG
          DE
          =
          BC
          CD
          =
          b
          a
          ,∠CBG=∠CDE,即可判定BG=DE不成立;推出∠EDC+∠DHO=90°,求出∠DOH=90°即可.
          解答:(1)①BG=DE,BG⊥DE,
          理由是:

          延長BG交DE于O,
          ∵四邊形ABCD、CGFE是正方形,
          ∴BC=CD=AB,CG=CE,∠BCD=∠ECD=90°,
          ∵在△BCG和△DCE中
          BC=CD
          ∠BCG=∠DCE
          CG=CE
          ,
          ∴△BCG≌△DCE,
          ∴BG=DE,∠CBG=∠CDE,
          ∵∠CBG+∠BGC=90°,
          又∵∠DGO=∠BGC,
          ∴∠EDC+∠DGO=90°,
          ∴∠DOG=180°-90°=90°,
          ∴BG⊥DE,
          即BG=DE,BG⊥DE;

          ②仍成立,
          證明:∵四邊形ABCD、CGFE是正方形,
          ∴BC=CD,CG=CE,∠BCD=∠ECG=90°,
          ∴∠BCD+∠DCG=∠ECG+∠DCG,
          即∠BCG=∠DCE,
          ∵在△BCG和△DCE中
          BC=CD
          ∠BCG=∠DCE
          CG=CE
          ,
          ∴△BCG≌△DCE,
          ∴BG=DE,∠CBG=∠CDE,
          ∵∠CBG+∠BGC=90°,
          又∵∠DGO=∠BGC,
          ∴∠EDC+∠DGO=90°,
          ∴∠DOG=180°-90°=90°,
          ∴BG⊥DE,
          即BG=DE,BG⊥DE;

          (2)解:BG=DE不成立,BG⊥DE成立,
          理由是:∵四邊形ABCD和四邊形GCEF都是矩形,
          ∴AB=CD=a,BC=b,CE=ka,CG=kb,
          BC
          CD
          =
          CG
          CE
          =
          b
          a

          ∵∠BCG=∠DCE(已證),
          ∴△BCG∽△DCE,
          BG
          DE
          =
          BC
          CD
          =
          b
          a
          ,∠CBG=∠CDE,
          ∵∠CBG+∠BHC=90°,
          又∵∠DHO=∠BHC,
          ∴∠EDC+∠DHO=90°,
          ∴∠DOH=180°-90°=90°,
          ∴BG⊥DE,
          則BG=DE不成立,BG⊥DE成立.
          點評:本題考查的知識點是正方形性質(zhì),矩形的性質(zhì),全等三角形性質(zhì)和判定,相似三角形的性質(zhì)和判定,三角形的內(nèi)角和定理,主要考查學生運用定理進行推理的能力,題目比較典型,綜合性比較強.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          已知:如圖,在Rt△ABC中,∠C=90°,BC=4,AC=8,點D在斜邊AB上,分別作DE⊥AC,DF⊥BC,垂精英家教網(wǎng)足分別為E、F,得四邊形DECF,設DE=x,DF=y.
          (1)含y的代數(shù)式表示AE;
          (2)y與x之間的函數(shù)關(guān)系式,并求出x的取值范圍;
          (3)設四邊形DECF的面積為S,x在什么范圍時s隨x增大而增大.x在什么范圍時s隨x增大而減小,并畫出s與x圖象;
          (4)求出x為何值時,面積s最大.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,AD是△ABC的中線,AE=EF=FC,BE、AD相交于點G,下列4個結(jié)論:①DF∥GE;②DF:BG=2:3;③AG=GD;④S△BGD=S四邊形EFDG;其中正確的有( 。
          A、1個B、2個C、3個D、4個

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
          求證:AB∥CD,AD∥BC.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
          求證:AB∥CD,AD∥BC.

          查看答案和解析>>

          科目:初中數(shù)學 來源:浙江省同步題 題型:證明題

          已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

          查看答案和解析>>

          同步練習冊答案