日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,矩形ABCD中,AD=6,AB=,點O是AD的中點,點P在DA的延長線上,且AP=3.一動點E從P點出發(fā),以每秒1個單位長度的速度沿射線PD勻速運(yùn)動;另一動點F從D點出發(fā),以每秒1個單位長度的速度沿DO勻速運(yùn)動,到達(dá)O點后,立即以原速度沿OD返回.已知點E、F同時出發(fā),當(dāng)兩點相遇時停止運(yùn)動.在點E、F的運(yùn)動過程中,以EF為邊作等邊△EFG,使△EFG和矩形ABCD在射線PD的同側(cè),設(shè)運(yùn)動的時間為t秒(t≥0).
          (1)當(dāng)?shù)冗叀鱁FG的邊EG恰好經(jīng)過點B時,運(yùn)動時間t的值為______;
          (2)當(dāng)?shù)冗叀鱁FG的頂點G恰好落在BC上時,運(yùn)動時間t的值為______;
          (3)在整個運(yùn)動過程中,設(shè)等邊△EFG和矩形ABCD重疊部分的面積為S,請寫出S與t 之間的函數(shù)關(guān)系式和相應(yīng)的自變量t的取值范圍.

          【答案】分析:(1)當(dāng)邊EG恰好經(jīng)過點B時,∠DEB=60°,AE=3-t,在Rt△DEB中,解直角三角形可求t的值;
          (2)當(dāng)?shù)冗叀鱁FG的頂點G恰好落在BC上時,等邊△EFG的高=AB=,可求此時等邊△EFG的邊長,從而可求t的值;
          (3)按照等邊△EFG和矩形ABCD重疊部分的圖形特點,分為0≤t<1,1≤t<2.5,2.5<t<3,3≤t<6,6≤t<7.5五種情況,分別寫出函數(shù)關(guān)系式.
          解答:解:(1)∵△GEF是等邊三角形,
          ∴∠GED=60°,
          ∵四邊形ABCD是矩形,
          ∴∠BAD=90°,
          ∴∠BAE=90°,
          ∴∠ABE=30°.
          ∴tan∠ABE==
          設(shè)PE=t,則AE=3-t,

          ∵AB=2,
          ,
          ∴t=1.
          故答案為:1s;
          (2)如圖2,設(shè)t秒后等邊△EFG的頂點G恰好落在BC上,作GM⊥PD于M,
          在Rt△EGM中,由勾股定理得:
          EM=2,
          ∴EF=4,
          ∴9-2t=4,
          ∴t=2.5s.
          故答案為:2.5.
          (3)①當(dāng)0≤t<1時,重合部分是直角梯形,如圖3,作FH⊥BC與H,
          DF=CH=t,則在直角△FQH中,QH=HF•tan30°=2×=2,
          則BQ=BC-QH-CH=6-2-t=4-t,
          ∴S=(BQ+AF)•AB=(4-t+6-t)•2=-2t+10;

          ②當(dāng)1≤t<2.5時,如圖4,同上可得:CN=2+t,
          BM=t-2.5,
          則MN=6-(2+t)-(t-2.5)=6.5-2t,
          EF=6+3-2t=9-2t,AE=3-t,
          則S△AEH=AE•AH=×(3-t)•(3-t)2=(3-t)2;
          S△EFG=(9-2t)2,S△MNG=(6.5-t)2,
          則重合部分的面積是:S=(9-2t)2-(6.5-t)2-(3-t)2;

          ③當(dāng)2.5<t<3時,如圖5,
          等邊△EFG的邊長是9-2t,則面積是:(9-2t)2,
          直角△AEQ中,AE=3-t,則AQ=(3-t),
          因而△AEQ的面積是:(3-t)2,
          則S=(9-2t)2-(3-t)2

          ④當(dāng)3≤t<6時,如圖6,重合部分就是△EFG,邊長是:3,則S=×32=;



          ⑤當(dāng)6≤t<7.5時,如圖7,重合部分就是△EFG,邊長是:3-2t,
          則S=(3-2t)2
          點評:本題是函數(shù)與矩形、三角形的面積的計算,正確分情況討論是解題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,矩形ABCD中,AB=6,BC=8,M是BC的中點,DE⊥AM,E是垂足,則△ABM的面積為
           
          ;△ADE的面積為
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,矩形ABCD中,AD=a,AB=b,要使BC邊上至少存在一點P,使△ABP、△APD、△CDP兩兩相似,則a、b間的關(guān)系式一定滿足( 。
          A、a≥
          1
          2
          b
          B、a≥b
          C、a≥
          3
          2
          b
          D、a≥2b

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          7、如圖,矩形ABCD中,AE⊥BD,垂足為E,∠DAE=2∠BAE,則∠CAE=
          30
          °.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2008•懷柔區(qū)二模)已知如圖,矩形ABCD中,AB=3cm,BC=4cm,E是邊AD上一點,且BE=ED,P是對角線上任意一點,PF⊥BE,PG⊥AD,垂足分別為F、G.則PF+PG的長為
          3
          3
          cm.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2002•西藏)已知:如圖,矩形ABCD中,E、F是AB邊上兩點,且AF=BE,連結(jié)DE、CF得到梯形EFCD.
          求證:梯形EFCD是等腰梯形.

          查看答案和解析>>

          同步練習(xí)冊答案