日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知拋物線E:y2=4x的準(zhǔn)線為l,焦點(diǎn)為F,O為坐標(biāo)原點(diǎn).
          (1)求過(guò)點(diǎn)O,F(xiàn),且與l相切的圓的方程;
          (2)過(guò)F的直線交拋物線E于A,B兩點(diǎn),A關(guān)于x軸的對(duì)稱點(diǎn)為A′,求證:直線A′B過(guò)定點(diǎn).

          【答案】
          (1)

          解:拋物線E:y2=4x的準(zhǔn)線l的方程為:x=﹣1,焦點(diǎn)坐標(biāo)為F(1,0),

          設(shè)所求圓的圓心C(a,b),半徑為r,∵圓C過(guò)O,F(xiàn),

          ,∵圓C與直線l:x=﹣1相切,

          ,得

          ∴過(guò)O,F(xiàn),且與直線l相切的圓的方程為


          (2)

          解:證明:解法一:依題意知直線AB的斜率存在,設(shè)直線AB方程為y=k(x﹣1),A(x1,y1),B(x2,y2),(x1≠x2),A′(x1,﹣y1),

          聯(lián)立 ,消去y得k2x2﹣(2k2+4)x+k2=0.

          ,x1x2=1.

          ∵直線BA′的方程為 ,

          ∴令y=0,得

          直線BA′過(guò)定點(diǎn)(﹣1,0),

          解法二:直線BA′過(guò)定點(diǎn)M(﹣1,0).

          證明:依題意知直線AB的斜率存在,設(shè)直線AB方程為y=k(x﹣1),A(x1,y1),B(x2,y2),(x1≠x2),A′(x1,﹣y1),

          聯(lián)立 ,消去y得k2x2﹣(2k2+4)x+k2=0,

          ,x1x2=1.

          ∵x2y1+x1y2+y1+y2=k(x1﹣1)x2+k(x2﹣1)x1+k(x1+x2﹣2)=2kx1x2﹣2k=2k1﹣2k=0.

          ∴kA′M﹣kBM=0,即kA′M=kBM=0,A′、B、M三點(diǎn)共線,

          ∴直線BA′過(guò)定點(diǎn)(﹣1,0).

          解法三:設(shè)直線AB的方程:x=my+1,A(x1,y1),B(x2,y2),則A′(x1,﹣y1).

          得,y2﹣4my﹣4=0.

          ∴y1+y2=4m,y1y2=﹣4.

          ,

          ∴直線BA′的方程為

          =

          ∴直線BA′過(guò)定點(diǎn)(﹣1,0).


          【解析】(1)由題意求得焦點(diǎn)及準(zhǔn)線方程,即可求得圓心,利用點(diǎn)到直線的距離公式,即可求得半徑,即可求得圓的方程;(2)方法一:設(shè)直線AB方程為y=k(x﹣1),代入橢圓方程,利用韋達(dá)定理,求得直線BA′的方程為,當(dāng)y=0,求得x=﹣1,則直線BA′過(guò)定點(diǎn)(﹣1,0);方法二:設(shè)直線AB方程為y=k(x﹣1),代入橢圓方程,利用韋達(dá)定理求得kA′M﹣kBM=0,則kA′M=kBM=0,A′、B、M三點(diǎn)共線,則直線BA′過(guò)定點(diǎn)(﹣1,0);方法三:設(shè)線AB的方程:x=my+1,求得直線BA′的方程為,利用韋達(dá)定理可得y= ,則直線BA′過(guò)定點(diǎn)(﹣1,0).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A(1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,其頂點(diǎn)為點(diǎn)D,點(diǎn)E的坐標(biāo)為(0,﹣1),該拋物線與BE交于另一點(diǎn)F,連接BC.

          (1)求該拋物線的解析式,并用配方法把解析式化為y=a(x﹣h)2+k的形式;
          (2)若點(diǎn)H(1,y)在BC上,連接FH,求△FHB的面積;
          (3)一動(dòng)點(diǎn)M從點(diǎn)D出發(fā),以每秒1個(gè)單位的速度平沿行與y軸方向向上運(yùn)動(dòng),連接OM,BM,設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0),在點(diǎn)M的運(yùn)動(dòng)過(guò)程中,當(dāng)t為何值時(shí),∠OMB=90°?
          (4)在x軸上方的拋物線上,是否存在點(diǎn)P,使得∠PBF被BA平分?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】ABC中,AB=AC,BAC=30°,ABC的面積為49,P為直線BC上一點(diǎn),PEAB,PFAC,CHAB,垂足分別為E,F(xiàn),H.若PF=3,則PE=________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】任取不等式組 的一個(gè)整數(shù)解,則能使關(guān)于x的方程:2x+k=﹣1的解為非負(fù)數(shù)的概率為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知f(x)=sinxcosx+ cos2x﹣ ,將f(x)的圖象向右平移 個(gè)單位,再向上平移1個(gè)單位,得到y(tǒng)=g(x)的圖象.若對(duì)任意實(shí)數(shù)x,都有g(shù)(a﹣x)=g(a+x)成立,則 =(
          A.
          B.1
          C.
          D.0

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,F(xiàn)1 , F2分別是雙曲線 的左、右焦點(diǎn),過(guò)F1的直線l與雙曲線分別交于點(diǎn)A,B,且A(1, ),若△ABF2為等邊三角形,則△BF1F2的面積為(
          A.1
          B.
          C.
          D.2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=|2x﹣a|+a.
          (1)當(dāng)a=3時(shí),求不等式f(x)≤6的解集;
          (2)設(shè)函數(shù)g(x)=|2x﹣3|,x∈R,f(x)+g(x)≥5,求a的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(1)如圖1是由大小相同的小立方塊搭成的幾何體,請(qǐng)?jiān)趫D2的方格中畫(huà)出從上面和左面看到的該幾何體的形狀圖.(只需用2B鉛筆將虛線化為實(shí)線)

          (2)若要用大小相同的小立方塊搭一個(gè)幾何體,使得它從上面和左面看到的形狀圖與你在圖2方格中所畫(huà)的形狀圖相同,則搭這樣的一個(gè)幾何體最多需要   個(gè)小立方塊.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖1,小明將一張矩形紙片沿對(duì)角線剪開(kāi),得到兩張三角形紙片(如圖2),量得他們的斜邊長(zhǎng)為10cm,較短直角邊長(zhǎng)為5cm,較小銳角為30°,再將這兩張三角紙片擺成如圖3的形狀,但點(diǎn)B、C、F、D在同一條直線上,且點(diǎn)C與點(diǎn)F重合(在圖3至圖6中統(tǒng)一用F表示),小明在對(duì)這兩張三角形紙片進(jìn)行如下操作時(shí)遇到了三個(gè)問(wèn)題,請(qǐng)你幫助解決.

          (1)將圖3中的△ABF沿BD向右平移到圖4的位置,使點(diǎn)B與點(diǎn)F 重合,請(qǐng)你求出平移的距離;

          (2)將圖3中的△ABF繞點(diǎn)F順時(shí)針?lè)较蛐D(zhuǎn)30°到圖5的位置,A1F交DE于點(diǎn)G,請(qǐng)你求出線段FG的長(zhǎng)度;

          (3)將圖3中的△ABF沿直線AF翻折到圖6的位置,AB1DE于點(diǎn)H,請(qǐng)證明:AH=DH

          查看答案和解析>>

          同步練習(xí)冊(cè)答案