日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,⊙O半徑為4cm,其內(nèi)接正六邊形ABCDEF,點P,Q同時分別從A,D兩點出發(fā),以1cm/s速度沿AF,DC向終點F,C運動,連接PB,QE,PE,BQ.設(shè)運動時間為t(s).

          (1)求證:四邊形PEQB為平行四邊形;
          (2)填空:
          ①當(dāng)t=s時,四邊形PBQE為菱形;
          ②當(dāng)t=s時,四邊形PBQE為矩形.

          【答案】
          (1)證明:∵正六邊形ABCDEF內(nèi)接于⊙O,
          ∴AB=BC=CD=DE=EF=FA,∠A=∠ABC=∠C=∠D=∠DEF=∠F,
          ∵點P,Q同時分別從A,D兩點出發(fā),以1cm/s速度沿AF,DC向終點F,C運動,
          ∴AP=DQ=t,PF=QC=4﹣t,
          在△ABP和△DEQ中,

          ∴△ABP≌△DEQ(SAS),
          ∴BP=EQ,同理可證PE=QB,
          ∴四邊形PEQB是平行四邊形
          (2)2;0或4
          【解析】(2)解:①當(dāng)PA=PF,QC=QD時,四邊形PBEQ是菱形時,此時t=2s.
          ②當(dāng)t=0時,∠EPF=∠PEF=30°,
          ∴∠BPE=120°﹣30°=90°,
          ∴此時四邊形PBQE是矩形.
          當(dāng)t=4時,同法可知∠BPE=90°,此時四邊形PBQE是矩形.
          綜上所述,t=0s或4s時,四邊形PBQE是矩形.
          故答案為2s,0s或4s.
          (1)根據(jù)正六邊形的性質(zhì)得出AB=DE,∠A=∠D,再根據(jù)點P,Q同時分別從A,D兩點出發(fā),以1cm/s速度沿AF,DC向終點F,C運動,得出AP=DQ,就可證明△ABP≌△DEQ,可得BP=EQ,同理PE=BQ,由此即可證明結(jié)論。
          (2)①當(dāng)PA=PF,QC=QD時,四邊形PBEQ是菱形時,此時t=2s;
          ②當(dāng)t=0時,∠EPF=∠PEF=30°,得出∠BPE=90°,可證明此時四邊形PBQE是矩形.當(dāng)t=4時,同法可知∠BPE=90°,此時四邊形PBQE是矩形,即可得出答案。

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,已知∠1+2=180°,∠2=B,試說明∠DEC+C=180°,請完成下列填空:

          證明:∵∠1+2=180°(已知)

          __________(____________________)

          ______=EFC(____________________)

          又∵2=B(已知)

          ∴∠2=______(等量代換)

          ___________(內(nèi)錯角相等,兩直線平行)

          ∴∠DEC+C=180°(兩直線平行,同旁內(nèi)角互補)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正五邊形ABCDE的邊長為2,連結(jié)AC、AD、BE,BE分別與AC和AD相交于點F、G,連結(jié)DF,給出下列結(jié)論:①∠FDG=18°;②FG=3﹣ ;③(S四邊形CDEF2=9+2 ;④DF2﹣DG2=7﹣2 .其中結(jié)論正確的個數(shù)是( )

          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀下面的推理過程,在括號內(nèi)填上推理的依據(jù),如圖:

          ∵∠1+2=180°,∠2+4=180°(已知)

          ∴∠1=4( )

          ca( )

          又∵∠2+3=180°(已知 )

          3=6( )

          ∴∠2+6=180°( )

          ab( )

          cb( )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線m經(jīng)過A4,0)、B3,﹣),直線n經(jīng)過原點且與直線m相交于D,D點的橫坐標(biāo)為﹣2

          1)求直線mn的表達式;

          2)求△OBD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在等邊△ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4,則以下四個結(jié)論中: ①△BDE是等邊三角形; AEBC; ③△ADE的周長是9 ④∠ADE=BDC.其中正確的序號是( 。

          A.②③④B.①②④C.①②③D.①③④

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,⊙O的直徑為10,弦AB的長為6,M是弦AB上的一動點,則線段的OM的長的取值范圍是(
          A.3≤OM≤5
          B.4≤OM≤5
          C.3<OM<5
          D.4<OM<5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,∠1=∠2,∠C=∠D。

          求證:∠A=∠F。

          證明:∵∠1=∠2(已知),

          又∠1=∠DMN(_______________),

          ∴∠2=∠_________(等量代換),

          ∴DB∥EC( ),

          ∴∠DBC+∠C=1800(兩直線平行 , ),

          ∵∠C=∠D( ),

          ∴∠DBC+ =1800(等量代換),

          ∴DF∥AC( ,兩直線平行),

          ∴∠A=∠F(

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】 學(xué)!鞍僮兡Х健鄙鐖F準(zhǔn)備購買A,B兩種魔方,已知購買2A種魔方和6B種魔方共需130元,購買3A種魔方和4B種魔方所需款數(shù)相同.

          (1)求這兩種魔方的單價;

          (2)結(jié)合社員們的需求,社團決定購買A,B兩種魔方共100個.某商店有兩種優(yōu)惠活動,如圖所示.請根據(jù)以上信息,購進A種魔方多少個時,兩種活動費用相同?

          查看答案和解析>>

          同步練習(xí)冊答案